
Eniko Kovari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5399914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiomic Analyses of Dopaminergic Neurons Isolated from Human Substantia Nigra in Parkinson's Disease: A Descriptive and Exploratory Study. Cellular and Molecular Neurobiology, 2022, 42, 2805-2818.	3.3	13
2	The 18â€ [–] kDa translocator protein is associated with microglia in the hippocampus of non-demented elderly subjects. Aging Brain, 2022, 2, 100045.	1.3	0
3	Cortical microinfarcts and the aging brain. , 2021, , 153-162.		0
4	Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1242-1255.	4.3	36
5	Medial temporal lobe volume is associated with neuronal loss but not with hippocampal microinfarcts despite their high frequency in aging brains. Neurobiology of Aging, 2020, 95, 9-14.	3.1	1
6	Astrocytic TSPO Upregulation Appears Before Microglial TSPO in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 77, 1043-1056.	2.6	38
7	Visualization of White Matter Fiber Tracts of Brain Tissue Sections With Wide-Field Imaging Mueller Polarimetry. IEEE Transactions on Medical Imaging, 2020, 39, 4376-4382.	8.9	52
8	MRI detection of cerebral microbleeds: size matters. Neuroradiology, 2019, 61, 1209-1213.	2.2	16
9	A walk through tau therapeutic strategies. Acta Neuropathologica Communications, 2019, 7, 22.	5.2	211
10	TSPO and amyloid deposits in sub-regions of the hippocampus in the 3xTgAD mouse model of Alzheimer's disease. Neurobiology of Disease, 2019, 121, 95-105.	4.4	42
11	Early Alzheimer-type lesions in cognitively normal subjects. Neurobiology of Aging, 2018, 62, 34-44.	3.1	36
12	Air bubble artifact reduction in post-mortem whole-brain MRI: the influence of receiver bandwidth. Neuroradiology, 2018, 60, 1089-1092.	2.2	10
13	Targeting SUMO-1ylation Contrasts Synaptic Dysfunction in a Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 6609-6623.	4.0	26
14	The <i>MAPT</i> gene is differentially methylated in the progressive supranuclear palsy brain. Movement Disorders, 2016, 31, 1883-1890.	3.9	25
15	Post-mortem assessment in vascular dementia: advances and aspirations. BMC Medicine, 2016, 14, 129.	5.5	99
16	Amnesia in frontotemporal dementia: shedding light on the Geneva historical data. Journal of Neurology, 2016, 263, 657-664.	3.6	7
17	A neuronal aging pattern unique to humans and common chimpanzees. Brain Structure and Function, 2016, 221, 647-664.	2.3	18
18	Radiologic-Histopathologic Correlation of Cerebral Microbleeds Using Pre-Mortem and Post-Mortem MRI. PLoS ONE, 2016, 11, e0167743.	2.5	24

Eniko Kovari

#	Article	IF	CITATIONS
19	Neuropathological Changes in Aging Brain. Advances in Experimental Medicine and Biology, 2015, 821, 11-17.	1.6	30
20	No neuropathological evidence for a direct topographical relation between microbleeds and cerebral amyloid angiopathy. Acta Neuropathologica Communications, 2015, 3, 49.	5.2	23
21	Neuropathology of Parkinsonism in Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2015, 822, 149-149.	1.6	0
22	Proteomic analysis of human substantia nigra identifies novel candidates involved in <scp>P</scp> arkinson's disease pathogenesis. Proteomics, 2014, 14, 784-794.	2.2	85
23	Neuropathology of dementia in a large cohort of patients with Parkinson's disease. Parkinsonism and Related Disorders, 2013, 19, 864-868.	2.2	102
24	Etiologies of <scp>P</scp> arkinsonism in a Century‣ong Autopsyâ€Based Cohort. Brain Pathology, 2013, 23, 28-33.	4.1	39
25	Microvascular Burden and Alzheimer-Type Lesions Across the Age Spectrum. Journal of Alzheimer's Disease, 2012, 32, 643-652.	2.6	32
26	The Geneva brain collection. Annals of the New York Academy of Sciences, 2011, 1225, E131-46.	3.8	13
27	Small Vascular and Alzheimer Disease-Related Pathologic Determinants of Dementia in the Oldest-Old. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1247-1255.	1.7	38
28	Differential Impact of Lacunes and Microvascular Lesions on Poststroke Depression. Stroke, 2009, 40, 3557-3562.	2.0	82
29	The impact of vascular burden on late-life depression. Brain Research Reviews, 2009, 62, 19-32.	9.0	58
30	Neuropathology of Lewy body disorders. Brain Research Bulletin, 2009, 80, 203-210.	3.0	59
31	The neuroanatomical model of post-stroke depression: Towards a change of focus?. Journal of the Neurological Sciences, 2009, 283, 158-162.	0.6	83
32	Stereologic estimates of total spinophilin-immunoreactive spine number in area 9 and the CA1 field: Relationship with the progression of Alzheimer's disease. Neurobiology of Aging, 2008, 29, 1296-1307.	3.1	73
33	ldentification of Alzheimer and vascular lesion thresholds for mixed dementia. Brain, 2007, 130, 2830-2836.	7.6	153
34	Sorting out the clinical consequences of ischemic lesions in brain aging: A clinicopathological approach. Journal of the Neurological Sciences, 2007, 257, 17-22.	0.6	34
35	Assessing the cognitive impact of Alzheimer disease pathology and vascular burden in the aging brain: the Geneva experience. Acta Neuropathologica, 2007, 113, 1-12.	7.7	94
36	Lewy body dysphagia. Acta Neuropathologica, 2007, 114, 295-298.	7.7	19

Eniko Kovari

#	Article	IF	CITATIONS
37	Cognitive impact of neuronal pathology in the entorhinal cortex and CA1 field in Alzheimer's disease. Neurobiology of Aging, 2006, 27, 270-277.	3.1	80
38	Neural substrates of cognitive and behavioral deficits in atypical Alzheimer's disease. Brain Research Reviews, 2006, 51, 176-211.	9.0	74
39	Stereologic Analysis of Microvascular Morphology in the Elderly. Journal of Neuropathology and Experimental Neurology, 2006, 65, 235-244.	1.7	76
40	Cognitive Consequences of Thalamic, Basal Ganglia, and Deep White Matter Lacunes in Brain Aging and Dementia. Stroke, 2005, 36, 1184-1188.	2.0	184
41	Humoral immunity in brain aging and Alzheimer's disease. Brain Research Reviews, 2005, 48, 477-487.	9.0	59
42	Stereologic analysis of hippocampal Alzheimer's disease pathology in the oldest-old: Evidence for sparing of the entorhinal cortex and CA1 field. Experimental Neurology, 2005, 193, 198-206.	4.1	46
43	Pathological Correlates of Poststroke Depression in Elderly Patients. American Journal of Geriatric Psychiatry, 2005, 13, 166-169.	1.2	26
44	Pathological Correlates of Poststroke Depression in Elderly Patients. American Journal of Geriatric Psychiatry, 2005, 13, 166-169.	1.2	12
45	Cortical ubiquitin-positive inclusions in frontotemporal dementia without motor neuron disease: a quantitative immunocytochemical study. Acta Neuropathologica, 2004, 108, 207-12.	7.7	19
46	Cortical Microinfarcts and Demyelination Significantly Affect Cognition in Brain Aging. Stroke, 2004, 35, 410-414.	2.0	193
47	Lewy body densities in the entorhinal and anterior cingulate cortex predict cognitive deficits in Parkinson's disease. Acta Neuropathologica, 2003, 106, 83-88.	7.7	196
48	Tau and neurofilaments in a family with frontotemporal dementia unlinked to chromosome 17q21–22. Neurobiology of Disease, 2003, 12, 46-55.	4.4	21
49	Stereologic Evidence for Persistence of Viable Neurons in Layer II of the Entorhinal Cortex and the CA1 Field in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2003, 62, 55-67.	1.7	67
50	Neurofibrillary tangles in elderly patients with late onset schizophrenia. Neuroscience Letters, 2002, 324, 109-112.	2.1	29
51	Clinical Validity of Aß-Protein Deposition Staging in Brain Aging and Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2001, 60, 946-952.	1.7	56
52	Anterior cingulate cortex pathology in schizophrenia and bipolar disorder. Acta Neuropathologica, 2001, 102, 373-379.	7.7	189
53	Search for a Mutation in the tau Gene in a Swiss Family with Frontotemporal Dementia. Experimental Neurology, 2000, 161, 330-335.	4.1	14
54	Differential distribution of presenilin-1, Bax, and Bcl-X L in Alzheimer's disease and frontotemporal dementia. Acta Neuropathologica, 1999, 98, 141-149.	7.7	30