
Phillip C Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5398854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recommendations for nomenclature and definition of cell products intended for human cardiovascular use. Cardiovascular Research, 2022, 118, 2428-2436.	3.8	6
2	Stem Cell and Exosome Therapy in Pulmonary Hypertension. Korean Circulation Journal, 2022, 52, 110.	1.9	10
3	Induced pluripotent stem cell–derived extracellular vesicles in regenerative medicine. , 2022, , 507-527.		Ο
4	Comparative analysis on the anti-inflammatory/immune effect of mesenchymal stem cell therapy for the treatment of pulmonary arterial hypertension. Scientific Reports, 2021, 11, 2012.	3.3	12
5	Mitochondria-Rich Extracellular Vesicles From Autologous Stem Cell–Derived Cardiomyocytes Restore Energetics of Ischemic Myocardium. Journal of the American College of Cardiology, 2021, 77, 1073-1088.	2.8	102
6	miR-106a–363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury. Basic Research in Cardiology, 2021, 116, 19.	5.9	34
7	Dual Contrast Manganese-Enhanced MRI and Gadolinium Delayed-Enhanced MRI Detect Heterogenous Myocardial Viability in Ischemic Cardiomyopathy. JACC: Cardiovascular Imaging, 2021, 14, 1474-1476.	5.3	3
8	A Phase <scp>II</scp> study of autologous mesenchymal stromal cells and câ€kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the <scp>CCTRN CONCERTâ€HF</scp> trial. European Journal of Heart Failure, 2021, 23, 661-674.	7.1	89
9	Peripheral Blood Biomarkers Associated With Improved Functional Outcome in Patients With Chronic Left Ventricular Dysfunction: A Biorepository Evaluation of the FOCUS-CCTRN Trial. Frontiers in Cardiovascular Medicine, 2021, 8, 698088.	2.4	1
10	Mitochondria-Rich Extracellular Vesicles Rescue Patient-Specific Cardiomyocytes From Doxorubicin Injury. JACC: CardioOncology, 2021, 3, 428-440.	4.0	42
11	Therapeutic Applications of Extracellular Vesicles for Myocardial Repair. Frontiers in Cardiovascular Medicine, 2021, 8, 758050.	2.4	25
12	Meta-analysis of short- and long-term efficacy of mononuclear cell transplantation in patients with myocardial infarction. American Heart Journal, 2020, 220, 155-175.	2.7	7
13	Combined T 2 â€preparation and multidimensional outer volume suppression for coronary artery imaging with 3D cones trajectories. Magnetic Resonance in Medicine, 2020, 83, 2221-2231.	3.0	1
14	Allogeneic Mesenchymal Cell Therapy in Anthracycline-Induced Cardiomyopathy HeartÂFailure Patients. JACC: CardioOncology, 2020, 2, 581-595.	4.0	24
15	Sacubitril/Valsartan Improves Cardiac Function and Decreases Myocardial Fibrosis Via Downregulation of Exosomal miRâ€181a in a Rodent Chronic Myocardial Infarction Model. Journal of the American Heart Association, 2020, 9, e015640.	3.7	50
16	Exosomes as natural nanocarriers for therapeutic and diagnostic use in cardiovascular diseases. , 2020, , 71-88.		0
17	Exosomes From Induced Pluripotent Stem Cell–Derived Cardiomyocytes Promote Autophagy for Myocardial Repair. Journal of the American Heart Association, 2020, 9, e014345.	3.7	71
18	Manganese-enhanced T1 mapping to quantify myocardial viability: validation with 18F-fluorodeoxyglucose positron emission tomography. Scientific Reports, 2020, 10, 2018.	3.3	10

#	Article	IF	CITATIONS
19	Stem Cell-Derived Exosomes Protect Astrocyte Cultures From in vitro Ischemia and Decrease Injury as Post-stroke Intravenous Therapy. Frontiers in Cellular Neuroscience, 2019, 13, 394.	3.7	64
20	Cardiovascular Magnetic Resonance Angiography. , 2019, , 236-281.		0
21	Myocardial viability of the peri-infarct region measured by T1 mapping post manganese-enhanced MRI correlates with LV dysfunction. International Journal of Cardiology, 2019, 281, 8-14.	1.7	2
22	Defining genotype-phenotype relationships in patients with hypertrophic cardiomyopathy using cardiovascular magnetic resonance imaging. PLoS ONE, 2019, 14, e0217612.	2.5	10
23	Ferumoxytol-enhanced cardiovascular magnetic resonance detection of early stage acute myocarditis. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 77.	3.3	5
24	Wholeâ€heart coronary MR angiography using a 3D cones phyllotaxis trajectory. Magnetic Resonance in Medicine, 2019, 81, 1092-1103.	3.0	7
25	Induced Pluripotent Stem Cell (iPSC)–Derived Exosomes for Precision Medicine in Heart Failure. Circulation Research, 2018, 122, 661-663.	4.5	39
26	Rationale and Design of the CONCERT-HF Trial (Combination of Mesenchymal and c-kit ⁺) Tj ETQq	0 0 0 <u>0 r</u> gBT	/Overlock 10
27	TIME Trial: Effect of Timing of Stem Cell Delivery Following ST-Elevation Myocardial Infarction on the Recovery of Global and Regional Left Ventricular Function. Circulation Research, 2018, 122, 479-488.	4.5	50
28	10â€Manganese-enhanced T1 mapping in myocardial infarction: validation with ¹⁸ F-FDG PET/MR. , 2018, , .		0
29	Manganese-Enhanced T ₁ Mapping in the Myocardium of Normal and Infarcted Hearts. Contrast Media and Molecular Imaging, 2018, 2018, 1-13.	0.8	15
30	Rationale and Design of the SENECA (StEm cell iNjECtion in cAncer survivors) Trial. American Heart Journal, 2018, 201, 54-62.	2.7	17
31	Novel MRI Contrast from Magnetotactic Bacteria to Evaluate In Vivo Stem Cell Engraftment. , 2018, , 365-380.		0
32	Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells. PLoS ONE, 2018, 13, e0192662.	2.5	1
33	Abstract 17203: Exosomes From Induced Pluripotent Stem Cell-Derived Cardiomyocytes Salvage the Injured Myocardium by Modulation of Autophagy. Circulation, 2018, 138, .	1.6	Ο
34	3D imageâ€based navigators for coronary MR angiography. Magnetic Resonance in Medicine, 2017, 77, 1874-1883.	3.0	33
35	Exosomes Generated From iPSC-Derivatives. Circulation Research, 2017, 120, 407-417.	4.5	140
36	Evaluation of Cell Therapy on Exercise Performance and Limb Perfusion in Peripheral Artery Disease. Circulation, 2017, 135, 1417-1428.	1.6	46

#	Article	IF	CITATIONS
37	Peripheral Blood Cytokine Levels After Acute Myocardial Infarction. Circulation Research, 2017, 120, 1947-1957.	4.5	33
38	Advanced glycation end-product (AGE)-albumin from activated macrophage is critical in human mesenchymal stem cells survival and post-ischemic reperfusion injury. Scientific Reports, 2017, 7, 11593.	3.3	14
39	Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium. Circulation Research, 2017, 121, e22-e36.	4.5	124
40	T1 Map of Post-Myocardial Infarction for Precise Tissue Characterization. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	0
41	Myocardial Edema on T2-Weighted MRI. Circulation Research, 2017, 121, 326-328.	4.5	12
42	Molecular Imaging of Stem Cells and Exosomes for Myocardial Regeneration. Current Cardiovascular Imaging Reports, 2017, 10, 1.	0.6	3
43	Circulating Biomarkers to Identify Responders in Cardiac Cell therapy. Scientific Reports, 2017, 7, 4419.	3.3	18
44	Baseline assessment and comparison of arterial anatomy, hyperemic flow, and skeletal muscle perfusion in peripheral artery disease: The Cardiovascular Cell Therapy Research Network "Patients with Intermittent Claudication Injected with ALDH Bright Cells―(CCTRN PACE) study. American Heart Journal, 2017, 183, 24-34.	2.7	13
45	Identification of cardiovascular risk factors associated with bone marrow cell subsets in patients with STEMI: a biorepository evaluation from the CCTRN TIME and LateTIME clinical trials. Basic Research in Cardiology, 2017, 112, 3.	5.9	16
46	Challenging the complementarity of different metrics of left atrial function: insight from a cardiomyopathy-based study. European Heart Journal Cardiovascular Imaging, 2017, 18, 1153-1162.	1.2	16
47	Abstract 21129: Arterial Anatomy and Functional Performance in Peripheral Artery Disease: Cardiovascular Cell Therapy Research Network Patients With Intermittent Claudication Injected With ALDH Bright Cells: CCTRN PACE. Circulation, 2017, 136, .	1.6	0
48	Magnetic Nanoparticles for Targeting and Imaging of Stem Cells in Myocardial Infarction. Stem Cells International, 2016, 2016, 1-9.	2.5	50
49	Efficacy of Danlou Tablet in Patients with Non-ST Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention: Results from a Multicentre, Placebo-Controlled, Randomized Trial. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-10.	1.2	11
50	Bone marrow cell characteristics associated with patient profile and cardiac performance outcomes in the LateTIME-Cardiovascular Cell Therapy Research Network (CCTRN) trial. American Heart Journal, 2016, 179, 142-150.	2.7	18
51	Apelin-13 infusion salvages the peri-infarct region to preserve cardiac function after severe myocardial injury. International Journal of Cardiology, 2016, 222, 361-367.	1.7	10
52	The Promise and Challenge of InducedÂPluripotent Stem Cells forÂCardiovascular Applications. JACC Basic To Translational Science, 2016, 1, 510-523.	4.1	41
53	Novel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes. Scientific Reports, 2016, 6, 26960.	3.3	33
54	Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction. Radiology, 2016, 280, 815-825.	7.3	12

#	Article	IF	CITATIONS
55	Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging. Radiology, 2016, 280, 826-836.	7.3	12
56	Aligned nanofibrillar collagen scaffolds – Guiding lymphangiogenesis for treatment of acquired lymphedema. Biomaterials, 2016, 102, 259-267.	11.4	55
57	Telmisartan in the diabetic murine model of acute myocardial infarction: dual contrast manganese-enhanced and delayed enhancement MRI evaluation of the peri-infarct region. Cardiovascular Diabetology, 2016, 15, 24.	6.8	7
58	Concise Review: Review and Perspective of Cell Dosage and Routes of Administration From Preclinical and Clinical Studies of Stem Cell Therapy for Heart Disease. Stem Cells Translational Medicine, 2016, 5, 186-191.	3.3	109
59	Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts, 2016, 6, 111-115.	1.5	55
60	Direct Evaluation of Myocardial Viability and Stem Cell Engraftment Demonstrates Salvage of the Injured Myocardium. Circulation Research, 2015, 116, e40-50.	4.5	49
61	Rationale and Design of Sodium Tanshinone IIA Sulfonate in Left Ventricular Remodeling Secondary to Acute Myocardial Infarction (STAMP-REMODELING) Trial: A Randomized Controlled Study. Cardiovascular Drugs and Therapy, 2015, 29, 535-542.	2.6	19
62	Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature, 2015, 525, 479-485.	27.8	402
63	Manganeseâ€Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Periâ€Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia–Reperfusion Model. Journal of the American Heart Association, 2015, 4, .	3.7	21
64	Relationship between Echocardiographic and Magnetic Resonance Derived Measures of Right Ventricular Size and Function in Patients with Pulmonary Hypertension. Journal of the American Society of Echocardiography, 2014, 27, 405-412.	2.8	46
65	Graphite Oxide Nanoparticles with Diameter Greater than 20 nm Are Biocompatible with Mouse Embryonic Stem Cells and Can Be Used in a Tissue Engineering System. Small, 2014, 10, 1479-1484.	10.0	13
66	Abstract 19831: In Vivo Molecular Imaging of Human Pluripotent Stem Cell-derived Cardiomyocytes in a Murine Myocardial Injury Model via a Safe Harbor Integration of a Reporter Gene. Circulation, 2014, 130, .	1.6	4
67	Multi-cellular interactions sustain long-term contractility of human pluripotent stem cell-derived cardiomyocytes. American Journal of Translational Research (discontinued), 2014, 6, 724-35.	0.0	32
68	Human Amniotic Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells May Generate a Universal Source of Cardiac Cells. Stem Cells and Development, 2012, 21, 2798-2808.	2.1	42
69	Is Reliable In Vivo Detection of Stem Cell Viability Possible in a Large Animal Model of Myocardial Injury?. Circulation, 2012, 126, 388-390.	1.6	9
70	Theranostic effect of serial manganeseâ€enhanced magnetic resonance imaging of human embryonic stem cell derived teratoma. Magnetic Resonance in Medicine, 2012, 68, 595-599.	3.0	4
71	Apelin Enhances Directed Cardiac Differentiation of Mouse and Human Embryonic Stem Cells. PLoS ONE, 2012, 7, e38328.	2.5	36
72	Bone Marrow Cell Therapy in Clinical Trials: A Review of the Literature. Reviews on Recent Clinical Trials, 2012, 7, 204-213.	0.8	3

#	Article	IF	CITATIONS
73	In vivo molecular MRI of cell survival and teratoma formation following embryonic stem cell transplantation into the injured murine myocardium. Magnetic Resonance in Medicine, 2011, 66, 1374-1381.	3.0	27
74	Dual Manganese-Enhanced and Delayed Gadolinium-Enhanced MRI Detects Myocardial Border Zone Injury in a Pig Ischemia-Reperfusion Model. Circulation: Cardiovascular Imaging, 2011, 4, 574-582.	2.6	28
75	Positive contrast with alternating repetition time SSFP (PARTS): A fast imaging technique for SPIO″abeled cells. Magnetic Resonance in Medicine, 2010, 63, 427-437.	3.0	28
76	Quantitative Tissue Characterization of Infarct Core and Border Zone in Patients With Ischemic Cardiomyopathy by Magnetic Resonance Is Associated With Future Cardiovascular Events. Journal of the American College of Cardiology, 2010, 55, 2762-2768.	2.8	104
77	Selfâ€refocused spatialâ€spectral pulse for positive contrast imaging of cells labeled with SPIO nanoparticles. Magnetic Resonance in Medicine, 2009, 62, 183-192.	3.0	30
78	Manganeseâ€guided cellular MRI of human embryonic stem cell and human bone marrow stromal cell viability. Magnetic Resonance in Medicine, 2009, 62, 1047-1054.	3.0	28
79	Comparison of Optical Bioluminescence Reporter Gene and Superparamagnetic Iron Oxide MR Contrast Agent as Cell Markers for Noninvasive Imaging of Cardiac Cell Transplantation. Molecular Imaging and Biology, 2009, 11, 178-187.	2.6	84
80	Imaging Survival and Function of Transplanted Cardiac Resident Stem Cells. Journal of the American College of Cardiology, 2009, 53, 1229-1240.	2.8	170
81	Quantitative characterization of myocardial infarction by cardiovascular magnetic resonance predicts future cardiovascular events in patients with ischemic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2008, 10, 17.	3.3	51
82	In vivo serial evaluation of superparamagnetic ironâ€oxide labeled stem cells by offâ€resonance positive contrast. Magnetic Resonance in Medicine, 2008, 60, 1269-1275.	3.0	40
83	Comparison of Reporter Gene and Iron Particle Labeling for Tracking Fate of Human Embryonic Stem Cells and Differentiated Endothelial Cells in Living Subjects. Stem Cells, 2008, 26, 864-873.	3.2	216
84	Multimodal evaluation of in vivo magnetic resonance imaging of myocardial restoration by mouse embryonic stem cells. Journal of Thoracic and Cardiovascular Surgery, 2008, 136, 1028-1037.e1.	0.8	25
85	Multimodality Evaluation of the Viability of Stem Cells Delivered Into Different Zones of Myocardial Infarction. Circulation: Cardiovascular Imaging, 2008, 1, 6-13.	2.6	31
86	In vitro comparison of the biological effects of three transfection methods for magnetically labeling mouse embryonic stem cells with ferumoxides. Magnetic Resonance in Medicine, 2007, 57, 1173-1179.	3.0	72
87	Cardiovascular MRI for stem cell therapy. Current Cardiology Reports, 2007, 9, 45-50.	2.9	8
88	Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magnetic Resonance in Medicine, 2006, 55, 203-209.	3.0	106
89	Peri-Infarct Ischemia Determined by Cardiovascular Magnetic Resonance Evaluation of Myocardial Viability and Stress Perfusion Predicts Future Cardiovascular Events in Patients with Severe Ischemic Cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2006, 8, 773-779.	3.3	27
90	Collagen Matrices Enhance Survival of Transplanted Cardiomyoblasts and Contribute to Functional Improvement of Ischemic Rat Hearts. Circulation, 2006, 114, I-167-I-173.	1.6	188

#	Article	IF	CITATIONS
91	Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magnetic Resonance in Medicine, 2005, 53, 999-1005.	3.0	390
92	Magnetic resonance coronary angiography. Current Cardiology Reports, 2003, 5, 55-62.	2.9	4
93	Real-time interactive coronary MRA. Magnetic Resonance in Medicine, 2001, 46, 430-435.	3.0	33
94	Differential protective effects of varying degrees of hypoxia on the cytotoxicities of etoposide and bleomycin. Cancer Chemotherapy and Pharmacology, 1987, 19, 282-6.	2.3	12