
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5398836/publications.pdf Version: 2024-02-01

Нлм 7нц

#	Article	IF	CITATIONS
1	When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core–Shell System Toward Synergetic Electrocatalytic Water Splitting. Advanced Materials, 2015, 27, 4752-4759.	21.0	705
2	The Marriage of the FeN ₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Advanced Materials, 2018, 30, e1803220.	21.0	289
3	Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nature Communications, 2022, 13, 2662.	12.8	196
4	Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. Journal of Hazardous Materials, 2015, 286, 533-544.	12.4	166
5	Atomic cale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis. Advanced Materials, 2018, 30, e1707301.	21.0	148
6	Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates. Dalton Transactions, 2012, 41, 10465.	3.3	145
7	WO _{3–<i>x</i>} Nanoplates Grown on Carbon Nanofibers for an Efficient Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 18132-18139.	8.0	129
8	S-rich single-layered MoS ₂ nanoplates embedded in N-doped carbon nanofibers: efficient co-electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2014, 50, 15435-15438.	4.1	118
9	WSe ₂ and W(Se _x S _{1â^'x}) ₂ nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 18090-18097.	10.3	107
10	The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis. Energy and Environmental Science, 2017, 10, 321-330.	30.8	104
11	Design of Two-Dimensional, Ultrathin MoS ₂ Nanoplates Fabricated Within One-Dimensional Carbon Nanofibers With Thermosensitive Morphology: High-Performance Electrocatalysts For The Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2014, 6, 22126-22137.	8.0	102
12	High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chemical Engineering Journal, 2022, 431, 133251.	12.7	100
13	Facile and green fabrication of size-controlled AuNPs/CNFs hybrids for the highly sensitive simultaneous detection of heavy metal ions. Electrochimica Acta, 2016, 196, 422-430.	5.2	99
14	Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation. Chemical Communications, 2016, 52, 990-993.	4.1	95
15	Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO ₂ Reduction. ACS Nano, 2022, 16, 3251-3263.	14.6	94
16	Interatomic Electronegativity Offset Dictates Selectivity When Catalyzing the CO ₂ Reduction Reaction. Advanced Energy Materials, 2022, 12, .	19.5	91
17	A 3D dendritic WSe ₂ catalyst grown on carbon nanofiber mats for efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 12149-12153.	10.3	88
18	A new strategy for the surface-free-energy-distribution induced selective growth and controlled formation of Cu ₂ O–Au hierarchical heterostructures with a series of morphological evolutions. Journal of Materials Chemistry A, 2013, 1, 919-929.	10.3	84

Нам Zhu

#	Article	IF	CITATIONS
19	Constructing metallic zinc–cobalt sulfide hierarchical core–shell nanosheet arrays derived from 2D metal–organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance. Journal of Materials Chemistry A, 2019, 7, 7138-7150.	10.3	82
20	Facile and green synthesis of well-dispersed Au nanoparticles in PAN nanofibers by tea polyphenols. Journal of Materials Chemistry, 2012, 22, 9301.	6.7	81
21	Nano Highâ€Entropy Materials: Synthesis Strategies and Catalytic Applications. Small Structures, 2020, 1, 2000033.	12.0	80
22	The design and construction of 3D rose-petal-shaped MoS2 hierarchical nanostructures with structure-sensitive properties. Journal of Materials Chemistry A, 2014, 2, 7680.	10.3	70
23	Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2016, 215, 223-230.	5.2	68
24	Immobilization of Pt Nanoparticles in Carbon Nanofibers: Bifunctional Catalyst for Hydrogen Evolution and Electrochemical Sensor. Electrochimica Acta, 2015, 167, 48-54.	5.2	67
25	Morphology and Structure Engineering in Nanofiber Reactor: Tubular Hierarchical Integrated Networks Composed of Dual Phase Octahedral CoMn ₂ O ₄ /Carbon Nanofibers for Water Oxidation. Small, 2017, 13, 1700468.	10.0	66
26	Facile fabrication of AgNPs/(PVA/PEI) nanofibers: High electrochemical efficiency and durability for biosensors. Biosensors and Bioelectronics, 2013, 49, 210-215.	10.1	64
27	Carbon nanofiber-supported PdNi alloy nanoparticles as highly efficient bifunctional catalysts for hydrogen and oxygen evolution reactions. Electrochimica Acta, 2017, 246, 17-26.	5.2	63
28	Detection of trace Cd2+, Pb2+ and Cu2+ ions via porous activated carbon supported palladium nanoparticles modified electrodes using SWASV. Materials Chemistry and Physics, 2019, 225, 433-442.	4.0	61
29	Engineering the Composition and Structure of Bimetallic Au–Cu Alloy Nanoparticles in Carbon Nanofibers: Self-Supported Electrode Materials for Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 19756-19765.	8.0	55
30	Metal-free boron and sulphur co-doped carbon nanofibers with optimized p-band centers for highly efficient nitrogen electroreduction to ammonia. Applied Catalysis B: Environmental, 2021, 292, 120144.	20.2	55
31	Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2020, 834, 155158.	5.5	54
32	In Situ Fabrication of Electrospun Carbon Nanofibers–Binary Metal Sulfides as Freestanding Electrode for Electrocatalytic Water Splitting. Advanced Fiber Materials, 2021, 3, 117-127.	16.1	53
33	Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: A dynamic transformation from clusters to single atoms. Chemical Engineering Journal, 2020, 392, 123655.	12.7	52
34	Sublayer Stable Fe Dopant in Porous Pd Metallene Boosts Oxygen Reduction Reaction. ACS Nano, 2022, 16, 522-532.	14.6	52
35	In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting. Science Bulletin, 2020, 65, 640-650.	9.0	51
36	Low-Electronegativity Vanadium Substitution in Cobalt Carbide Induced Enhanced Electron Transfer for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 43261-43269.	8.0	49

#	Article	IF	CITATIONS
37	Green synthesis of halloysite nanotubes supported Ag nanoparticles for photocatalytic decomposition of methylene blue. Journal Physics D: Applied Physics, 2012, 45, 325302.	2.8	47
38	Small and well-dispersed Cu nanoparticles on carbon nanofibers: Self-supported electrode materials for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 18044-18049.	7.1	47
39	Synthesis and deposition of ultrafine noble metallic nanoparticles on amino-functionalized halloysite nanotubes and their catalytic application. Materials Research Bulletin, 2015, 61, 375-382.	5.2	46
40	Freeâ€6tanding and Ecoâ€Friendly Polyaniline Thin Films for Multifunctional Sensing of Physical and Chemical Stimuli. Advanced Functional Materials, 2017, 27, 1703147.	14.9	46
41	Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: A highly efficient surface-enhanced Raman scattering substrates with high density of "hot―spots. Biosensors and Bioelectronics, 2014, 54, 91-101.	10.1	45
42	A Crossâ€linked Conjugated Polymer Photosensitizer Enables Efficient Sunlightâ€lnduced Photooxidation. Angewandte Chemie - International Edition, 2019, 58, 3062-3066.	13.8	45
43	Understanding the Role of Nanoscale Heterointerfaces in Core/Shell Structures for Water Splitting: Covalent Bonding Interaction Boosts the Activity of Binary Transition-Metal Sulfides. ACS Applied Materials & Interfaces, 2020, 12, 6250-6261.	8.0	42
44	Isolation of Metalloid Boron Atoms in Intermetallic Carbide Boosts the Catalytic Selectivity for Electrocatalytic N ₂ Fixation. Advanced Energy Materials, 2021, 11, 2102138.	19.5	42
45	Tuning the electronic structure of AuNi homogeneous solid-solution alloy with positively charged Ni center for highly selective electrochemical CO2 reduction. Chemical Engineering Journal, 2021, 404, 126523.	12.7	41
46	Two-dimensional molybdenum disulfide and tungsten disulfide interleaved nanowalls constructed on silk cocoon-derived N-doped carbon fibers for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 21870-21882.	7.1	38
47	Single-atom catalysts for electrochemical clean energy conversion: recent progress and perspectives. Sustainable Energy and Fuels, 2020, 4, 996-1011.	4.9	36
48	Facile and green fabrication of small, mono-disperse and size-controlled noble metal nanoparticles embedded in water-stable polyvinyl alcohol nanofibers: High sensitive, flexible and reliable materials for biosensors. Sensors and Actuators B: Chemical, 2013, 185, 608-619.	7.8	35
49	NiCoSe 2-x /N-doped C mushroom-like core/shell nanorods on N-doped carbon fiber for efficiently electrocatalyzed overall water splitting. Electrochimica Acta, 2018, 272, 161-168.	5.2	34
50	Facile fabrication of polyaniline nanotubes/gold hybrid nanostructures as substrate materials for biosensors. Chemical Engineering Journal, 2014, 258, 281-289.	12.7	33
51	Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes toward Highly Active Catalysts. Nanomaterials and Nanotechnology, 2015, 5, 4.	3.0	33
52	Facile fabrication of AuNPs/PANI/HNTs nanostructures for high-performance electrochemical sensors towards hydrogen peroxide. Chemical Engineering Journal, 2014, 248, 307-314.	12.7	32
53	Selective growth of Au nanograins on specific positions (tips, edges and facets) of Cu2O octahedrons to form Cu2O–Au hierarchical heterostructures. Dalton Transactions, 2012, 41, 13795.	3.3	31
54	Synthesis of silver nanoparticles in electrospun polyacrylonitrile nanofibers using tea polyphenols as the reductant. Polymer Engineering and Science, 2013, 53, 1099-1108.	3.1	31

Нам Zhu

#	Article	IF	CITATIONS
55	Design and fabrication of size-controlled Pt–Au bimetallic alloy nanostructure in carbon nanofibers: a bifunctional material for biosensors and the hydrogen evolution reaction. Journal of Materials Science, 2017, 52, 8207-8218.	3.7	31
56	Designed Synthesis of Sizeâ€Controlled PtCu Alloy Nanoparticles Encapsulated in Carbon Nanofibers and Their High Efficient Electrocatalytic Activity Toward Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700005.	3.7	31
57	A novel synergistic confinement strategy for controlled synthesis of high-entropy alloy electrocatalysts. Chemical Communications, 2021, 57, 2637-2640.	4.1	31
58	Facile Fabrication of ZnO/TiO ₂ Heterogeneous Nanofibres and Their Photocatalytic Behaviour and Mechanism towards Rhodamine B. Nanomaterials and Nanotechnology, 2016, 6, 9.	3.0	30
59	Synthesis of a MoS2(1â^²x)Se2x ternary alloy on carbon nanofibers as the high efficient water splitting electrocatalyst. International Journal of Hydrogen Energy, 2017, 42, 1912-1918.	7.1	30
60	Facile fabrication of a binary NiCo phosphide withÂhierarchical architecture for efficient hydrogen evolution reactions. International Journal of Hydrogen Energy, 2019, 44, 4188-4196.	7.1	30
61	Probing the unexpected behavior of AuNPs migrating through nanofibers: a new strategy for the fabrication of carbon nanofiber–noble metal nanocrystal hybrid nanostructures. Journal of Materials Chemistry A, 2014, 2, 11728-11741.	10.3	28
62	Insitu growth of Rh nanoparticles with controlled sizes and dispersions on the cross-linked PVA–PEI nanofibers and their electrocatalytic properties towards H ₂ O ₂ . RSC Advances, 2014, 4, 794-804.	3.6	28
63	Carbon nanofibers as nanoreactors in the construction of PtCo alloy carbon core-shell structures for highly efficient and stable water splitting. Materials and Design, 2016, 109, 162-170.	7.0	28
64	Hyper-dendritic PdZn nanocrystals as highly stable and efficient bifunctional electrocatalysts towards oxygen reduction and ethanol oxidation. Chemical Engineering Journal, 2021, 420, 130503.	12.7	27
65	Nitrogen and gold nanoparticles co-doped carbon nanofiber hierarchical structures for efficient hydrogen evolution reactions. Electrochimica Acta, 2016, 208, 1-9.	5.2	25
66	Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis. Materials Research Bulletin, 2019, 112, 46-52.	5.2	25
67	Scalable NiCo <i>_x</i> S <i>_y</i> PANI@GF Membranes with Broadband Light Absorption and High Salt-Resistance for Efficient Solar-Driven Interfacial Evaporation. ACS Applied Energy Materials, 2021, 4, 3563-3572.	5.1	24
68	Integrating the cationic engineering and hollow structure engineering into perovskites oxides for efficient and stable electrocatalytic oxygen evolution. Electrochimica Acta, 2019, 327, 135033.	5.2	23
69	The 2D/2D p–n heterojunction of ZnCoMOF/g ₃ N ₄ with enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Organometallic Chemistry, 2021, 35, e6124.	3.5	23
70	Silk-derived graphene-like carbon with high electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 34219-34224.	3.6	22
71	Effects of modified nanocrystalline cellulose on the hydrophilicity, crystallization and mechanical behaviors of poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate). New Journal of Chemistry, 2018, 42, 11972-11978.	2.8	22
72	One-dimensional, space-confined, solid-phase growth of the Cu9S5@MoS2 core–shell heterostructure for electrocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 595, 88-97.	9.4	22

#	Article	IF	CITATIONS
73	Oxygen vacancy-enriched Bi2O3/BiFeO3 p-n heterojunction nanofibers with highly efficient photocatalytic activity under visible light irradiation. Applied Surface Science, 2021, 562, 150171.	6.1	22
74	Kelp-Derived Activated Porous Carbon for the Detection of Heavy Metal lons via Square Wave Anodic Stripping Voltammetry. Electrocatalysis, 2020, 11, 59-67.	3.0	21
75	Thermodynamically driven metal diffusion strategy for controlled synthesis of high-entropy alloy electrocatalysts. Chemical Communications, 2021, 57, 10027-10030.	4.1	21
76	Controlled morphology evolution of electrospun carbon nanofiber templated tungsten disulfide nanostructures. Electrochimica Acta, 2015, 176, 255-264.	5.2	19
77	Heterostructure design of Cu ₂ O/Cu ₂ S core/shell nanowires for solar-driven photothermal water vaporization towards desalination. Sustainable Energy and Fuels, 2020, 4, 6023-6029.	4.9	19
78	A Highly Active and Robust CoP/CoS2-Based Electrocatalyst Toward Overall Water Splitting. Electrocatalysis, 2019, 10, 253-261.	3.0	18
79	Controlled growth of ultrafine metal nanoparticles mediated by solid supports. Nanoscale Advances, 2021, 3, 1865-1886.	4.6	18
80	Direct Z-scheme CdS–NiPc heterojunctions as noble metal-free photocatalysts for enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2021, 11, 7683-7693.	4.1	18
81	A host-guest approach to fabricate metallic cobalt nanoparticles embedded in silk-derived N-doped carbon fibers for efficient hydrogen evolution. Green Energy and Environment, 2017, 2, 151-159.	8.7	17
82	A Facile Strategy to Synthesize Cobaltâ€Based Selfâ€Supported Material for Electrocatalytic Water Splitting. Particle and Particle Systems Characterization, 2017, 34, 1700189.	2.3	17
83	Engineered Cell-Assisted Photoactive Nanoparticle Delivery for Image-Guided Synergistic Photodynamic/Photothermal Therapy of Cancer. ACS Applied Materials & Interfaces, 2019, 11, 13935-13944.	8.0	17
84	Binary nickel iron phosphide composites with oxidized surface groups as efficient electrocatalysts for the oxygen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 3518-3524.	4.9	17
85	Atom-precise incorporation of platinum into ultrafine transition metal carbides for efficient synergetic electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 4911-4919.	10.3	17
86	Conductive metal and covalent organic frameworks for electrocatalysis: design principles, recent progress and perspective. Nanoscale, 2022, 14, 277-288.	5.6	17
87	Heterointerface engineering in bimetal alloy/metal carbide for superior hydrogen evolution reaction. Renewable Energy, 2020, 161, 1036-1045.	8.9	16
88	High entropy alloy nitrides with integrated nanowire/nanosheet architecture for efficient alkaline hydrogen evolution reactions. New Journal of Chemistry, 2021, 45, 22255-22260.	2.8	16
89	Capture and biological release of circulating tumor cells in pancreatic cancer based on peptide-functionalized silicon nanowire substrate. International Journal of Nanomedicine, 2019, Volume 14, 205-214.	6.7	15
90	Beyond Colloidal Synthesis: Nanofiber Reactor to Design Self-Supported Core–Shell Pd ₁₆ S ₇ /MoS ₂ /CNFs Electrode for Efficient and Durable Hydrogen Evolution Catalysis. ACS Applied Energy Materials, 2019, 2, 2013-2021.	5.1	15

#	Article	IF	CITATIONS
91	Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane. Journal of Colloid and Interface Science, 2022, 608, 1126-1134.	9.4	15
92	Building block nanoparticles engineering induces multi-element perovskite hollow nanofibers structure evolution to trigger enhanced oxygen evolution. Electrochimica Acta, 2018, 279, 301-310.	5.2	14
93	Boosting oxygen evolution through phase and electronic modulation of highly dispersed tungsten carbide with nickel doping. Journal of Colloid and Interface Science, 2021, 585, 258-266.	9.4	14
94	Synthesis and Catalytic Properties of Polyaniline/Au Hybrid Nanostructure. Soft Materials, 2014, 12, 179-184.	1.7	13
95	A self-supported electrochemical sensor for simultaneous sensitive detection of trace heavy metal ions based on PtAu alloy/carbon nanofibers. Analytical Methods, 2017, 9, 6801-6807.	2.7	13
96	Effect of rubber particles on impact resistance of concrete at a temperature of â^' 20Â℃. Archives of C and Mechanical Engineering, 2021, 21, 1.	ivil 3.8	13
97	The preparation of tubular heterostructures based on titanium dioxide and silica nanotubes and their photocatalytic activity. Dalton Transactions, 2014, 43, 1846-1853.	3.3	12
98	AgNPs/PVA and AgNPs/(PVA/PEI) hybrids: preparation, morphology and antibacterial activity. Journal Physics D: Applied Physics, 2013, 46, 345303.	2.8	11
99	Facile Fabrication of Palladium Nanoparticles Immobilized on the Water-Stable Polyvinyl Alcohol/Polyehyleneimine Nanofibers Via <i>In-Situ</i> Reduction and Their High Electrochemical Activity. Soft Materials, 2014, 12, 387-395.	1.7	11
100	Synthesis of MoSe ₂ /Carbon Nanofibers Hybrid and Its Hydrogen Evolution Reaction Performance. Chemistry Letters, 2016, 45, 69-71.	1.3	11
101	<i>In situ</i> synthesis of small Pt nanoparticles on chitin aerogel derived N doped ultra-thin carbon nanofibers for superior hydrogen evolution catalysis. New Journal of Chemistry, 2019, 43, 16490-16496.	2.8	11
102	A stable PdCu@Pd core-shell nanobranches with enhanced activity and methanol-tolerant for oxygen reduction reaction. Electrochimica Acta, 2020, 354, 136680.	5.2	11
103	Facile Fabrication of Au Nanoparticles Immobilized on Polyaniline Nanofibers: High Sensitive Nonenzymatic Hydrogen Peroxide Sensor. Nanoscience and Nanotechnology Letters, 2015, 7, 127-133.	0.4	11
104	An activated neodymium-based catalyst for styrene polymerization. Polymer International, 2005, 54, 1320-1325.	3.1	9
105	Nitrogen anion-decorated cobalt tungsten disulfides solid solutions on the carbon nanofibers for water splitting. Nanotechnology, 2018, 29, 385602.	2.6	8
106	Fabrication of Gold Nanoparticles Modified Carbon Nanofibers/Polyaniline Electrode for H2O2Determination. Journal of the Electrochemical Society, 2014, 161, H816-H821.	2.9	7
107	A Crossâ€linked Conjugated Polymer Photosensitizer Enables Efficient Sunlightâ€Induced Photooxidation. Angewandte Chemie, 2019, 131, 3094-3098.	2.0	7
108	Two-dimension on two-dimension growth: hierarchical Ni _{0.2} Mo _{0.8} N/Fe-doped Ni ₃ N nanosheet array for overall water splitting. RSC Advances, 2021, 11, 19797-19804.	3.6	7

#	Article	IF	CITATIONS
109	Organic-inorganic hybrid network constructed in polypropylene matrix and its reinforcing effects on polypropylene composites. Journal of Reinforced Plastics and Composites, 2013, 32, 174-182.	3.1	6
110	When amine-based conducting polymers meet Au nanoparticles: suppressing H ₂ evolution and promoting the selective electroreduction of CO ₂ to CO at low overpotentials. Sustainable Energy and Fuels, 2021, 5, 779-786.	4.9	6
111	TEMPLATE STRATEGY FOR THE SYNTHESIS OF Cu2O–Pt HIERARCHICAL HETEROSTRUCTURES FOR THE DEGRADATION OF METHYLENE BLUE. Nano, 2013, 08, 1350062.	1.0	5
112	Effects of Rubber Size on the Cracking Resistance of Rubberized Mortars. Materials, 2019, 12, 3132.	2.9	5
113	Interface engineering in core–shell Co ₉ S ₈ @MoS ₂ nanocrystals induces enhanced hydrogen evolution in acidic and alkaline media. New Journal of Chemistry, 2021, 45, 11167-11173.	2.8	5
114	Numerical Simulation of Fatigue Performance of Diaphragm of Large-Span Bridge Orthotropic Deck. Complexity, 2018, 2018, 1-19.	1.6	3
115	Electrocatalysis: Morphology and Structure Engineering in Nanofiber Reactor: Tubular Hierarchical Integrated Networks Composed of Dual Phase Octahedral CoMn ₂ 0 ₄ /Carbon Nanofibers for Water Oxidation (Small 26/2017). Small, 2017, 13, .	10.0	1
116	Electrocatalytic Nanomaterials: Atomicâ€5cale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis (Adv. Mater. 26/2018). Advanced Materials, 2018, 30, 1870191.	21.0	1
117	SYNTHESIS AND CHARACTERIZATION OF Au NANOPARTICLES/REDUCED GRAPHENE OXIDE NANOCOMPOSITE: A FACILE AND ECO-FRIENDLY APPROACH. Nano, 2014, 09, 1450031.	1.0	0
118	Thermodynamic driven phase engineering in VMo2S4 nanosheets for superior water splitting. Applied Surface Science, 2020, 527, 146755.	6.1	0