
Hannes E Bülow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5397032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging Glycosaminoglycan Modification Patterns In Vivo. Methods in Molecular Biology, 2022, 2303, 539-557.	0.9	1
2	Specific <i>N</i> â€glycans regulate an extracellular adhesion complex during somatosensory dendrite patterning. EMBO Reports, 2022, 23, e54163.	4.5	3
3	HSMotifDiscover: identification of motifs in sequences composed of non-single-letter elements. Bioinformatics, 2022, 38, 4036-4038.	4.1	0
4	Specific heparan sulfate modifications stabilize the synaptic organizer MADD-4/Punctin at Caenorhabditis elegans neuromuscular junctions. Genetics, 2021, 218, .	2.9	6
5	The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning. PLoS Genetics, 2021, 17, e1009475.	3.5	7
6	The HSPG syndecan is a core organizer of cholinergic synapses. Journal of Cell Biology, 2021, 220, .	5.2	19
7	Roles of glycoconjugates in neural patterning in C. elegans. Current Topics in Developmental Biology, 2021, 144, 377-408.	2.2	1
8	3030 – A GLYCAN BASED APPROACH TO CHARACTERIZING AND ISOLATING CELLS IN THE HEMATOPOIETIC SYSTEM. Experimental Hematology, 2020, 88, S47.	0.4	0
9	Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature, 2019, 571, 63-71.	27.8	534
10	Axon-Dependent Patterning and Maintenance of Somatosensory Dendritic Arbors. Developmental Cell, 2019, 48, 229-244.e4.	7.0	21
11	TIAM-1/GEF can shape somatosensory dendrites independently of its GEF activity by regulating F-actin localization. ELife, 2019, 8, .	6.0	40
12	Four specific Ig domains in UNC-52/Perlecan function with NID-1/Nidogen during dendrite morphogenesis in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2018, 145, .	2.5	15
13	Deciphering functional glycosaminoglycan motifs in development. Current Opinion in Structural Biology, 2018, 50, 144-154.	5.7	39
14	Diverse roles for glycosaminoglycans in neural patterning. Developmental Dynamics, 2018, 247, 54-74.	1.8	40
15	Synaptogenesis Is Modulated by Heparan Sulfate in <i>Caenorhabditis elegans</i> . Genetics, 2018, 209, 195-208.	2.9	22
16	A Non-Cell-Autonomous Role of BEC-1/BECN1/Beclin1 in Coordinating Cell-Cycle Progression and Stem Cell Proliferation during Germline Development. Current Biology, 2017, 27, 905-913.	3.9	88
17	Reduced Insulin/Insulin-Like Growth Factor Receptor Signaling Mitigates Defective Dendrite Morphogenesis in Mutants of the ER Stress Sensor IRE-1. PLoS Genetics, 2017, 13, e1006579.	3.5	22
18	Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To Control Cellular Migrations and Positioning in <i>Caenorhabditis elegans</i> . Genetics, 2017, 206, 1951-1967.	2.9	28

Hannes E Bülow

#	Article	IF	CITATIONS
19	Muscle- and Skin-Derived Cues Jointly Orchestrate Patterning of Somatosensory Dendrites. Current Biology, 2016, 26, 2379-2387.	3.9	51
20	Conservation of anatomically restricted glycosaminoglycan structures in divergent nematode species. Glycobiology, 2016, 26, 862-870.	2.5	13
21	Directional <i>Trans</i> -Synaptic Labeling of Specific Neuronal Connections in Live Animals. Genetics, 2015, 200, 697-705.	2.9	34
22	The Adhesion Molecule KAL-1/anosmin-1 Regulates Neurite Branching through a SAX-7/L1CAM–EGL-15/FGFR Receptor Complex. Cell Reports, 2015, 11, 1377-1384.	6.4	40
23	Intrinsic and Extrinsic Mechanisms of Dendritic Morphogenesis. Annual Review of Physiology, 2015, 77, 271-300.	13.1	123
24	Complex Cooperative Functions of Heparan Sulfate Proteoglycans Shape Nervous System Development in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1859-1870.	1.8	33
25	It's All in Your Mind: Determining Germ Cell Fate by Neuronal IRE-1 in C. elegans. PLoS Genetics, 2014, 10, e1004747.	3.5	30
26	The Proprotein Convertase KPC-1/Furin Controls Branching and Self-avoidance of Sensory Dendrites in Caenorhabditis elegans. PLoS Genetics, 2014, 10, e1004657.	3.5	42
27	Skin-Derived Cues Control Arborization of Sensory Dendrites in Caenorhabditis elegans. Cell, 2013, 155, 308-320.	28.9	144
28	Distinct 3- <i>O</i> -Sulfated Heparan Sulfate Modification Patterns Are Required for <i>kal-1</i> â^'Dependent Neurite Branching in a Context-Dependent Manner in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2013, 3, 541-552.	1.8	35
29	Direct visualization of specifically modified extracellular glycans in living animals. Nature Methods, 2012, 9, 477-479.	19.0	32
30	<i>Heparan sulfate 6-O-sulfotransferase 1</i> , a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11524-11529.	7.1	153
31	Genetic Analysis of the Heparan Modification Network in Caenorhabditis elegans. Journal of Biological Chemistry, 2011, 286, 16824-16831.	3.4	25
32	<i>C. elegans bicd-1</i> , homolog of the <i>Drosophila</i> dynein accessory factor <i>Bicaudal D</i> , regulates the branching of PVD sensory neuron dendrites. Development (Cambridge), 2011, 138, 507-518.	2.5	58
33	The PAPS transporter PST-1 is required for heparan sulfation and is essential for viability and neural development in <i>C. elegans</i> . Journal of Cell Science, 2009, 122, 4492-4504.	2.0	26
34	Extracellular Sugar Modifications Provide Instructive and Cell-Specific Information for Axon-Guidance Choices. Current Biology, 2008, 18, 1978-1985.	3.9	64
35	The Molecular Diversity of Glycosaminoglycans Shapes Animal Development. Annual Review of Cell and Developmental Biology, 2006, 22, 375-407.	9.4	317
36	Differential Sulfations and Epimerization Define Heparan Sulfate Specificity in Nervous System Development. Neuron, 2004, 41, 723-736.	8.1	236

Hannes E Bülow

#	Article	IF	CITATIONS
37	Differential Functions of the C. elegans FGF Receptor in Axon Outgrowth and Maintenance of Axon Position. Neuron, 2004, 42, 367-374.	8.1	91
38	Development and maintenance of neuronal architecture at the ventral midline of C. elegans. Current Opinion in Neurobiology, 2003, 13, 70-78.	4.2	27
39	A <i>C. elegans</i> CLIC-like Protein Required for Intracellular Tube Formation and Maintenance. Science, 2003, 302, 2134-2137.	12.6	146
40	Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene <i>kal-1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6346-6351.	7.1	155
41	Analyses of theCYP11Bgene family in the guinea pig suggest the existence of a primordialCYP11Bgene with aldosterone synthase activity. FEBS Journal, 2002, 269, 3838-3846.	0.2	36
42	Molecular Cloning and Functional Expression of the Cytochrome P450 11B-Hydroxylase of the Guinea Pig. Biochemical and Biophysical Research Communications, 1996, 221, 304-312.	2.1	20
43	Functional expression of the guinea pig 11B-hydroxylase in COS-1 Cells. Endocrine Research, 1996, 22, 479-484.	1.2	1
44	Expression of cytochrome P45011B1 mRNA in the brain of normal and hypertensive transgenic rats. Brain Research, 1996, 733, 73-82.	2.2	18