Abraham Acevedo-Arozena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/539684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /0	Dverlock 1 9.1	0 Tf 50 662 T 1,430
4	α-Synuclein impairs macroautophagy: implications for Parkinson's disease. Journal of Cell Biology, 2010, 190, 1023-1037.	5.2	687
5	Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nature Genetics, 2005, 37, 771-776.	21.4	405
6	Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Human Molecular Genetics, 2010, 19, 2144-2153.	2.9	191
7	ENU Mutagenesis, a Way Forward to Understand Gene Function. Annual Review of Genomics and Human Genetics, 2008, 9, 49-69.	6.2	143
8	Mice with endogenous <scp>TDP</scp> â€43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO Journal, 2018, 37, .	7.8	129
9	SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mammalian Genome, 2011, 22, 420-448.	2.2	113
10	Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in â€~FUSDelta14' knockin mice. Brain, 2017, 140, 2797-2805.	7.6	95
11	Analysis of Individual Mouse Activity in Group Housed Animals of Different Inbred Strains using a Novel Automated Home Cage Analysis System. Frontiers in Behavioral Neuroscience, 2016, 10, 106.	2.0	87
12	A comprehensive assessment of the <i>SOD1G93A</i> low-copy transgenic mouse, which models human amyotrophic lateral sclerosis. DMM Disease Models and Mechanisms, 2011, 4, 686-700.	2.4	86
13	Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nature Communications, 2016, 7, 12444.	12.8	79
14	IGF-1 receptor antagonism inhibits autophagy. Human Molecular Genetics, 2013, 22, 4528-4544.	2.9	76
15	Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	65
16	Dyneins, Autophagy, Aggregation and Neurodegeneration. Autophagy, 2005, 1, 177-178.	9.1	58
17	A novel SOD1-ALS mutation separates central and peripheral effects of mutant SOD1 toxicity. Human Molecular Genetics, 2015, 24, 1883-1897.	2.9	52
18	Otitis media in the Tgif knockout mouse implicates TGFβ signalling in chronic middle ear inflammatory disease. Human Molecular Genetics, 2013, 22, 2553-2565.	2.9	50

#	Article	IF	CITATIONS
19	Haplotype sharing suggests that a genomic segment containing six genes accounts for the pulmonary adenoma susceptibility 1 (Pas1) locus activity in mice. Oncogene, 2004, 23, 4495-4504.	5.9	49
20	EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome. Blood, 2019, 134, 277-290.	1.4	48
21	Loss-of-Function Mutations in FRRS1L Lead to an Epileptic-Dyskinetic Encephalopathy. American Journal of Human Genetics, 2016, 98, 1249-1255.	6.2	40
22	A new locus for resistance to Î ³ -radiation-induced thymic lymphoma identified using inter-specific consomic and inter-specific recombinant congenic strains of mice. Oncogene, 2002, 21, 6680-6683.	5.9	37
23	α-Synuclein levels modulate Huntington's disease in mice. Human Molecular Genetics, 2012, 21, 485-494.	2.9	37
24	Widespread RNA metabolism impairment in sporadic inclusion body myositis TDP43-proteinopathy. Neurobiology of Aging, 2014, 35, 1491-1498.	3.1	36
25	Inhibition of the mTOR pathway: A new mechanism of \hat{I}^2 cell toxicity induced by tacrolimus. American Journal of Transplantation, 2019, 19, 3240-3249.	4.7	26
26	Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. European Journal of Neuroscience, 2001, 13, 57-67.	2.6	25
27	Towards humane end points: behavioural changes precede clinical signs of disease in a Huntington's disease model. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1865-1874.	2.6	24
28	Behavioral and Other Phenotypes in a Cytoplasmic Dynein Light Intermediate Chain 1 Mutant Mouse. Journal of Neuroscience, 2011, 31, 5483-5494.	3.6	23
29	Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis. Brain, 2014, 137, 3171-3185.	7.6	23
30	α-synuclein levels affect autophagosome numbers in vivo and modulate Huntington disease pathology. Autophagy, 2012, 8, 431-432.	9.1	22
31	Uses for humanised mouse models in precision medicine for neurodegenerative disease. Mammalian Genome, 2019, 30, 173-191.	2.2	22
32	Loss of <i>Frrs1l</i> disrupts synaptic AMPA receptor function, and results in neurodevelopmental, motor, cognitive and electrographical abnormalities. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	22
33	Estrogen modulates norepinephrine-induced accumulation of adenosine cyclic monophosphate in a subpopulation of immortalized luteinizing hormone-releasing hormone secreting neurons from the mouse hypothalamus. Neuroscience Letters, 2001, 298, 61-64.	2.1	21
34	Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration. Human Molecular Genetics, 2016, 25, 291-307.	2.9	19
35	A Nonsense Mutation in Mouse Tardbp Affects TDP43 Alternative Splicing Activity and Causes Limb-Clasping and Body Tone Defects. PLoS ONE, 2014, 9, e85962.	2.5	18
36	Effects of dopaminergic cell degeneration on electrophysiological characteristics and GAD65/GAD67 expression in the substantia nigra: Different action on GABA cell subpopulations. Movement Disorders, 2003, 18, 254-266.	3.9	17

#	Article	IF	CITATIONS
37	A genetic modifier suggests that endurance exercise exacerbates Huntington's disease. Human Molecular Genetics, 2018, 27, 1723-1731.	2.9	17
38	Cancer modifier alleles inhibiting lung tumorigenesis are common in inbred mouse strains. International Journal of Cancer, 2002, 99, 555-559.	5.1	16
39	Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington's disease. Experimental Neurology, 2018, 299, 137-147.	4.1	14
40	Reducing lgf-1r Levels Leads To Paradoxical and Sexually Dimorphic Effects in HD Mice. PLoS ONE, 2014, 9, e105595.	2.5	8
41	TDP-43 mutations increase HNRNP A1-7B through gain of splicing function. Brain, 2018, 141, e83-e83.	7.6	7
42	Generation and analysis of innovative genomically humanized knockin SOD1, TARDBP (TDP-43), and FUS mouse models. IScience, 2021, 24, 103463.	4.1	4
43	Skeletal Muscle Modulates Huntington's Disease Pathogenesis in Mice: Role of Physical Exercise. Journal of Experimental Neuroscience, 2018, 12, 117906951880905.	2.3	3
44	α-Synuclein impairs macroautophagy: implications for Parkinson's disease. Journal of Experimental Medicine, 2010, 207, i29-i29.	8.5	1
45	Â-Synuclein levels modulate Huntington's disease in mice. Human Molecular Genetics, 2012, 21, 5237-5237.	2.9	0