Marco L Davila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5396672/publications.pdf

Version: 2024-02-01

76 papers

10,170 citations

30 h-index 98753 67 g-index

78 all docs 78 docs citations

78 times ranked 10667 citing authors

#	Article	IF	CITATIONS
1	A phase 2 multicenter trial of ofatumumab and prednisone as initial therapy for chronic graft-versus-host disease. Blood Advances, 2022, 6, 259-269.	2.5	5
2	CD3 engagement as a new strategy for allogeneic "off-the-shelf―TÂcell therapy. Molecular Therapy - Oncolytics, 2022, 24, 887-896.	2.0	1
3	Transverse myelitis after antiâ€CD19 directed CAR T cell therapy for relapsed large B cell lymphoma. EJHaem, 2022, 3, 223-227.	0.4	O
4	Whole-genome sequencing reveals complex genomic features underlying anti-CD19 CAR T-cell treatment failures in lymphoma. Blood, 2022, 140, 491-503.	0.6	32
5	Clonal Hematopoiesis Is Associated with Increased Risk of Severe Neurotoxicity in Axicabtagene Ciloleucel Therapy of Large B-Cell Lymphoma. Blood Cancer Discovery, 2022, 3, 385-393.	2.6	29
6	Primary progression during frontline CIT associates with decreased efficacy of subsequent CD19 CAR T-cell therapy in LBCL. Blood Advances, 2022, 6, 3970-3973.	2.5	6
7	Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Haematologica, 2021, 106, 978-986.	1.7	141
8	CD28 Costimulatory Domain–Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function. Cancer Immunology Research, 2021, 9, 62-74.	1.6	29
9	Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes. Journal of Clinical Investigation, 2021, 131, .	3.9	54
10	Deletion of Cbl-b inhibits CD8 ⁺ T-cell exhaustion and promotes CAR T-cell function., 2021, 9, e001688.		47
11	Regulatory challenges and considerations for the clinical application of CAR T cell therapy. Expert Opinion on Biological Therapy, 2021, 21, 549-552.	1.4	1
12	A phase 2 trial of GVHD prophylaxis with PTCy, sirolimus, and MMF after peripheral blood haploidentical transplantation. Blood Advances, 2021, 5, 1154-1163.	2.5	26
13	Pacritinib Combined with Sirolimus and Low-Dose Tacrolimus for GVHD Prevention after Allogeneic Hematopoietic Cell Transplantation: Preclinical and Phase I Trial Results. Clinical Cancer Research, 2021, 27, 2712-2722.	3.2	11
14	Incidence and Management of Effusions Before and After CD19-Directed Chimeric Antigen Receptor (CAR) T Cell Therapy in Large B Cell Lymphoma. Transplantation and Cellular Therapy, 2021, 27, 242.e1-242.e6.	0.6	5
15	Chimeric Antigen Receptor Design Today and Tomorrow. Cancer Journal (Sudbury, Mass), 2021, 27, 92-97.	1.0	3
16	Interventions and outcomes of adult patients with B-ALL progressing after CD19 chimeric antigen receptor T-cell therapy. Blood, 2021, 138, 531-543.	0.6	42
17	Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood, 2021, 137, 2621-2633.	0.6	137
18	Outcomes of CD19 Chimeric Antigen Receptor T Cell Therapy in Patients with Gastrointestinal Tract Involvement of Large B Cell Lymphoma. Transplantation and Cellular Therapy, 2021, 27, 768.e1-768.e6.	0.6	4

#	Article	IF	Citations
19	Advances in CAR T cell clinical development. Best Practice and Research in Clinical Haematology, 2021, 34, 101307.	0.7	О
20	Expansion and Enrichment of Gamma-Delta (γδ) T Cells from Apheresed Human Product. Journal of Visualized Experiments, 2021, , .	0.2	8
21	4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells., 2021, 9, e003354.		32
22	CAR T-cell hematotoxicity: is inflammation the key?. Blood, 2021, 138, 2447-2448.	0.6	3
23	Generation of Antitumor T Cells For Adoptive Cell Therapy With Artificial Antigen Presenting Cells. Journal of Immunotherapy, 2020, 43, 79-88.	1.2	14
24	Tumor Microenvironment Composition and Severe Cytokine Release Syndrome (CRS) Influence Toxicity in Patients with Large B-Cell Lymphoma Treated with Axicabtagene Ciloleucel. Clinical Cancer Research, 2020, 26, 4823-4831.	3.2	47
25	High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B-cell lymphoma. Blood Advances, 2020, 4, 3268-3276.	2.5	134
26	Venous thromboembolism associated with CD19-directed CAR T-cell therapy in large B-cell lymphoma. Blood Advances, 2020, 4, 4086-4090.	2.5	22
27	CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood, 2020, 136, 2308-2318.	0.6	133
28	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events., 2020, 8, e001511.		138
29	Human CD83-targeted chimeric antigen receptor T cells prevent and treat graft-versus-host disease. Journal of Clinical Investigation, 2020, 130, 4652-4662.	3.9	27
30	Haemophagocytic lymphohistiocytosis has variable time to onset following CD19 chimeric antigen receptor T cell therapy. British Journal of Haematology, 2019, 187, e35-e38.	1.2	35
31	Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2018, 378, 449-459.	13.9	1,951
32	NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory acute myeloid leukemia patient. Haematologica, 2018, 103, e424-e426.	1.7	66
33	Concurrent therapy of chronic lymphocytic leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia utilizing CD19-targeted CAR T-cells. Leukemia and Lymphoma, 2018, 59, 1717-1721.	0.6	6
34	Concise Review: Emerging Principles from the Clinical Application of Chimeric Antigen Receptor T Cell Therapies for B Cell Malignancies. Stem Cells, 2018, 36, 36-44.	1.4	48
35	$\langle i \rangle$ In vivo $\langle i \rangle$ IL-12/IL-23p40 neutralization blocks Th1/Th17 response after allogeneic hematopoietic cell transplantation. Haematologica, 2018, 103, 531-539.	1.7	25
36	4-1BB enhancement of CAR T function requires NF-κB and TRAFs. JCI Insight, 2018, 3, .	2.3	88

#	Article	IF	CITATIONS
37	Disruption of aÂself-amplifying catecholamine loop reduces cytokine release syndrome. Nature, 2018, 564, 273-277.	13.7	193
38	Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 2018, 175, 1780-1795.e19.	13.5	445
39	CAR T cells find strength in polyfunction. Blood, 2018, 132, 769-770.	0.6	2
40	CAR T cells, immunologic and cellular therapies in hematologic malignancies. Best Practice and Research in Clinical Haematology, 2018, 31, 115-116.	0.7	1
41	VDJServer: A Cloud-Based Analysis Portal and Data Commons for Immune Repertoire Sequences and Rearrangements. Frontiers in Immunology, 2018, 9, 976.	2.2	68
42	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	15.2	179
43	IL-2 promotes early Treg reconstitution after allogeneic hematopoietic cell transplantation. Haematologica, 2017, 102, 948-957.	1.7	33
44	Regulatory challenges and considerations for the clinical application of CAR-T cell anti-cancer therapy. Expert Opinion on Biological Therapy, 2017, 17, 659-661.	1.4	14
45	Immunotherapy Target Evaluation for Myeloid Diseases. Biology of Blood and Marrow Transplantation, 2017, 23, S273.	2.0	0
46	Co-Stimulatory Regulation of CAR T Cell Function. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S43-S44.	0.2	0
47	Is Disease-Specific Immunotherapy a Potential Reality for MDS?. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S26-S30.	0.2	5
48	Study protocol for THINK: a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types. BMJ Open, 2017, 7, e017075.	0.8	43
49	Gammaretroviral Production and T Cell Transduction to Genetically Retarget Primary T Cells Against Cancer. Methods in Molecular Biology, 2017, 1514, 111-118.	0.4	13
50	The Latest Advances in CAR T-Cell Therapy for Refractory and Relapsed Lymphomas and Leukemias. Journal of the Advanced Practitioner in Oncology, 2017, 8, .	0.2	0
51	At The Bedside: Clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. Journal of Leukocyte Biology, 2016, 100, 1265-1272.	1.5	40
52	CAR models: next-generation CAR modifications for enhanced T-cell function. Molecular Therapy - Oncolytics, 2016, 3, 16014.	2.0	128
53	Biology and clinical application of CAR T cells for B cell malignancies. International Journal of Hematology, 2016, 104, 6-17.	0.7	68
54	Chimeric antigen receptor T cells get passed by leukemia. Translational Cancer Research, 2016, 5, S315-S317.	0.4	1

#	Article	IF	CITATIONS
55	CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia. Clinical Advances in Hematology and Oncology, 2016, 14, 802-808.	0.3	71
56	CD19-Targeted T Cells for Hematologic Malignancies. Cancer Journal (Sudbury, Mass), 2015, 21, 470-474.	1.0	28
57	Using gene therapy to manipulate the immune system in the fight against B-cell leukemias. Expert Opinion on Biological Therapy, 2015, 15, 403-416.	1.4	3
58	Chimeric antigen receptors for the adoptive T cell therapy of hematologic malignancies. International Journal of Hematology, 2014, 99, 361-371.	0.7	94
59	Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 2014, 6, 224ra25.	5.8	2,069
60	CARs Move To the Fast Lane. Molecular Therapy, 2014, 22, 477-478.	3.7	4
61	Abstract CT102: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Cancer Research, 2014, 74, CT102-CT102.	0.4	5
62	CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Science Translational Medicine, 2013, 5, 177ra38.	5.8	1,748
63	Chimeric Antigen Receptor Therapy for Chronic Lymphocytic Leukemia. Hematology/Oncology Clinics of North America, 2013, 27, 341-353.	0.9	13
64	CD19 CAR-Targeted T Cells Induce Long-Term Remission and B Cell Aplasia in an Immunocompetent Mouse Model of B Cell Acute Lymphoblastic Leukemia. PLoS ONE, 2013, 8, e61338.	1.1	148
65	Safe and Effective Re-Induction Of Complete Remissions In Adults With Relapsed B-ALL Using 19-28z CAR CD19-Targeted T Cell Therapy. Blood, 2013, 122, 69-69.	0.6	5
66	How do CARs work?. Oncolmmunology, 2012, 1, 1577-1583.	2.1	96
67	Impact of the Conditioning Chemotherapy On Outcomes in Adoptive T Cell Therapy: Results From a Phase I Clinical Trial of Autologous CD19-Targeted T Cells for Patients with Relapsed CLL. Blood, 2012, 120, 1797-1797.	0.6	6
68	Conditioning Intensity and T Cell Dose Determine Efficacy of CD19-Targeted T Cell-Mediated Tumor Eradication in an Immunocompetent Mouse Model of B-ALL Blood, 2012, 120, 2613-2613.	0.6	0
69	Molecular Remission and B Cell Aplasia Induced in a First Cohort of Adults with Relapsed B-ALL Treated with 19–28z CAR-Targeted T Cells. Blood, 2012, 120, 3566-3566.	0.6	1
70	CD19-Targeted Donor T Cells Exert Potent Graft Versus Lymphoma Activity and Attenuated Gvhd. Blood, 2012, 120, 451-451.	0.6	1
71	Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 2011, 118, 4817-4828.	0.6	1,135
72	T Cells Genetically Targeted to CD19 Eradicate B-ALL In a Novel Syngeneic Mouse Disease Model. Blood, 2010, 116, 171-171.	0.6	8

#	Article	IF	CITATION
73	Conserved cryptic recombination signals in $\hat{Vl^2}$ gene segments are cleaved in small pre-B cells. BMC Immunology, 2009, 10, 37.	0.9	3
74	Prospective Estimation of Recombination Signal Efficiency and Identification of Functional Cryptic Signals in the Genome by Statistical Modeling. Journal of Experimental Medicine, 2003, 197, 207-220.	4.2	59
75	Identification and utilization of arbitrary correlations in models of recombination signal sequences. Genome Biology, 2002, 3, research0072.1.	13.9	54
76	A role for secondary $V(D)J$ recombination in oncogenic chromosomal translocations?. Advances in Cancer Research, 2001, 81, 61-92.	1.9	28