List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5396672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 2014, 6, 224ra25.	12.4	2,069
2	Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2018, 378, 449-459.	27.0	1,951
3	CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Science Translational Medicine, 2013, 5, 177ra38.	12.4	1,748
4	Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 2011, 118, 4817-4828.	1.4	1,135
5	Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 2018, 175, 1780-1795.e19.	28.9	445
6	Disruption of aÂself-amplifying catecholamine loop reduces cytokine release syndrome. Nature, 2018, 564, 273-277.	27.8	193
7	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	30.7	179
8	CD19 CAR-Targeted T Cells Induce Long-Term Remission and B Cell Aplasia in an Immunocompetent Mouse Model of B Cell Acute Lymphoblastic Leukemia. PLoS ONE, 2013, 8, e61338.	2.5	148
9	Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Haematologica, 2021, 106, 978-986.	3.5	141
10	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. , 2020, 8, e001511.		138
11	Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood, 2021, 137, 2621-2633.	1.4	137
12	High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B-cell lymphoma. Blood Advances, 2020, 4, 3268-3276.	5.2	134
13	CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood, 2020, 136, 2308-2318.	1.4	133
14	CAR models: next-generation CAR modifications for enhanced T-cell function. Molecular Therapy - Oncolytics, 2016, 3, 16014.	4.4	128
15	How do CARs work?. Oncolmmunology, 2012, 1, 1577-1583.	4.6	96
16	Chimeric antigen receptors for the adoptive T cell therapy of hematologic malignancies. International Journal of Hematology, 2014, 99, 361-371.	1.6	94
17	4-1BB enhancement of CAR T function requires NF- $\hat{I}^{ ext{P}}B$ and TRAFs. JCI Insight, 2018, 3, .	5.0	88
18	CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia. Clinical Advances in Hematology and Oncology, 2016, 14, 802-808.	0.3	71

#	Article	IF	CITATIONS
19	Biology and clinical application of CAR T cells for B cell malignancies. International Journal of Hematology, 2016, 104, 6-17.	1.6	68
20	VDJServer: A Cloud-Based Analysis Portal and Data Commons for Immune Repertoire Sequences and Rearrangements. Frontiers in Immunology, 2018, 9, 976.	4.8	68
21	NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory acute myeloid leukemia patient. Haematologica, 2018, 103, e424-e426.	3.5	66
22	Prospective Estimation of Recombination Signal Efficiency and Identification of Functional Cryptic Signals in the Genome by Statistical Modeling. Journal of Experimental Medicine, 2003, 197, 207-220.	8.5	59
23	Identification and utilization of arbitrary correlations in models of recombination signal sequences. Genome Biology, 2002, 3, research0072.1.	9.6	54
24	Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes. Journal of Clinical Investigation, 2021, 131, .	8.2	54
25	Concise Review: Emerging Principles from the Clinical Application of Chimeric Antigen Receptor T Cell Therapies for B Cell Malignancies. Stem Cells, 2018, 36, 36-44.	3.2	48
26	Tumor Microenvironment Composition and Severe Cytokine Release Syndrome (CRS) Influence Toxicity in Patients with Large B-Cell Lymphoma Treated with Axicabtagene Ciloleucel. Clinical Cancer Research, 2020, 26, 4823-4831.	7.0	47
27	Deletion of Cbl-b inhibits CD8 ⁺ T-cell exhaustion and promotes CAR T-cell function. , 2021, 9, e001688.		47
28	Study protocol for THINK: a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types. BMJ Open, 2017, 7, e017075.	1.9	43
29	Interventions and outcomes of adult patients with B-ALL progressing after CD19 chimeric antigen receptor T-cell therapy. Blood, 2021, 138, 531-543.	1.4	42
30	At The Bedside: Clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. Journal of Leukocyte Biology, 2016, 100, 1265-1272.	3.3	40
31	Haemophagocytic lymphohistiocytosis has variable time to onset following CD19 chimeric antigen receptor T cell therapy. British Journal of Haematology, 2019, 187, e35-e38.	2.5	35
32	IL-2 promotes early Treg reconstitution after allogeneic hematopoietic cell transplantation. Haematologica, 2017, 102, 948-957.	3.5	33
33	4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells. , 2021, 9, e003354.		32
34	Whole-genome sequencing reveals complex genomic features underlying anti-CD19 CAR T-cell treatment failures in lymphoma. Blood, 2022, 140, 491-503.	1.4	32
35	CD28 Costimulatory Domain–Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function. Cancer Immunology Research, 2021, 9, 62-74.	3.4	29
36	Clonal Hematopoiesis Is Associated with Increased Risk of Severe Neurotoxicity in Axicabtagene Ciloleucel Therapy of Large B-Cell Lymphoma. Blood Cancer Discovery, 2022, 3, 385-393.	5.0	29

#	Article	IF	CITATIONS
37	A role for secondary V(D)J recombination in oncogenic chromosomal translocations?. Advances in Cancer Research, 2001, 81, 61-92.	5.0	28
38	CD19-Targeted T Cells for Hematologic Malignancies. Cancer Journal (Sudbury, Mass), 2015, 21, 470-474.	2.0	28
39	Human CD83-targeted chimeric antigen receptor T cells prevent and treat graft-versus-host disease. Journal of Clinical Investigation, 2020, 130, 4652-4662.	8.2	27
40	A phase 2 trial of GVHD prophylaxis with PTCy, sirolimus, and MMF after peripheral blood haploidentical transplantation. Blood Advances, 2021, 5, 1154-1163.	5.2	26
41	<i>In vivo</i> IL-12/IL-23p40 neutralization blocks Th1/Th17 response after allogeneic hematopoietic cell transplantation. Haematologica, 2018, 103, 531-539.	3.5	25
42	Venous thromboembolism associated with CD19-directed CAR T-cell therapy in large B-cell lymphoma. Blood Advances, 2020, 4, 4086-4090.	5.2	22
43	Regulatory challenges and considerations for the clinical application of CAR-T cell anti-cancer therapy. Expert Opinion on Biological Therapy, 2017, 17, 659-661.	3.1	14
44	Generation of Antitumor T Cells For Adoptive Cell Therapy With Artificial Antigen Presenting Cells. Journal of Immunotherapy, 2020, 43, 79-88.	2.4	14
45	Chimeric Antigen Receptor Therapy for Chronic Lymphocytic Leukemia. Hematology/Oncology Clinics of North America, 2013, 27, 341-353.	2.2	13
46	Gammaretroviral Production and T Cell Transduction to Genetically Retarget Primary T Cells Against Cancer. Methods in Molecular Biology, 2017, 1514, 111-118.	0.9	13
47	Pacritinib Combined with Sirolimus and Low-Dose Tacrolimus for GVHD Prevention after Allogeneic Hematopoietic Cell Transplantation: Preclinical and Phase I Trial Results. Clinical Cancer Research, 2021, 27, 2712-2722.	7.0	11
48	Expansion and Enrichment of Gamma-Delta (γδ) T Cells from Apheresed Human Product. Journal of Visualized Experiments, 2021, , .	0.3	8
49	T Cells Genetically Targeted to CD19 Eradicate B-ALL In a Novel Syngeneic Mouse Disease Model. Blood, 2010, 116, 171-171.	1.4	8
50	Concurrent therapy of chronic lymphocytic leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia utilizing CD19-targeted CAR T-cells. Leukemia and Lymphoma, 2018, 59, 1717-1721.	1.3	6
51	Impact of the Conditioning Chemotherapy On Outcomes in Adoptive T Cell Therapy: Results From a Phase I Clinical Trial of Autologous CD19-Targeted T Cells for Patients with Relapsed CLL. Blood, 2012, 120, 1797-1797.	1.4	6
52	Primary progression during frontline CIT associates with decreased efficacy of subsequent CD19 CAR T-cell therapy in LBCL. Blood Advances, 2022, 6, 3970-3973.	5.2	6
53	Is Disease-Specific Immunotherapy a Potential Reality for MDS?. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S26-S30.	0.4	5
54	Incidence and Management of Effusions Before and After CD19-Directed Chimeric Antigen Receptor (CAR) T Cell Therapy in Large B Cell Lymphoma. Transplantation and Cellular Therapy, 2021, 27, 242.e1-242.e6.	1.2	5

#	Article	IF	CITATIONS
55	Safe and Effective Re-Induction Of Complete Remissions In Adults With Relapsed B-ALL Using 19-28z CAR CD19-Targeted T Cell Therapy. Blood, 2013, 122, 69-69.	1.4	5
56	A phase 2 multicenter trial of ofatumumab and prednisone as initial therapy for chronic graft-versus-host disease. Blood Advances, 2022, 6, 259-269.	5.2	5
57	Abstract CT102: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Cancer Research, 2014, 74, CT102-CT102.	0.9	5
58	CARs Move To the Fast Lane. Molecular Therapy, 2014, 22, 477-478.	8.2	4
59	Outcomes of CD19 Chimeric Antigen Receptor T Cell Therapy in Patients with Gastrointestinal Tract Involvement of Large B Cell Lymphoma. Transplantation and Cellular Therapy, 2021, 27, 768.e1-768.e6.	1.2	4
60	Conserved cryptic recombination signals in Vκ gene segments are cleaved in small pre-B cells. BMC Immunology, 2009, 10, 37.	2.2	3
61	Using gene therapy to manipulate the immune system in the fight against B-cell leukemias. Expert Opinion on Biological Therapy, 2015, 15, 403-416.	3.1	3
62	Chimeric Antigen Receptor Design Today and Tomorrow. Cancer Journal (Sudbury, Mass), 2021, 27, 92-97.	2.0	3
63	CAR T-cell hematotoxicity: is inflammation the key?. Blood, 2021, 138, 2447-2448.	1.4	3
64	CAR T cells find strength in polyfunction. Blood, 2018, 132, 769-770.	1.4	2
65	CAR T cells, immunologic and cellular therapies in hematologic malignancies. Best Practice and Research in Clinical Haematology, 2018, 31, 115-116.	1.7	1
66	Regulatory challenges and considerations for the clinical application of CAR T cell therapy. Expert Opinion on Biological Therapy, 2021, 21, 549-552.	3.1	1
67	Molecular Remission and B Cell Aplasia Induced in a First Cohort of Adults with Relapsed B-ALL Treated with 19–28z CAR-Targeted T Cells. Blood, 2012, 120, 3566-3566.	1.4	1
68	CD19-Targeted Donor T Cells Exert Potent Graft Versus Lymphoma Activity and Attenuated Gvhd. Blood, 2012, 120, 451-451.	1.4	1
69	Chimeric antigen receptor T cells get passed by leukemia. Translational Cancer Research, 2016, 5, S315-S317.	1.0	1
70	CD3 engagement as a new strategy for allogeneic "off-the-shelf―TÂcell therapy. Molecular Therapy - Oncolytics, 2022, 24, 887-896.	4.4	1
71	Immunotherapy Target Evaluation for Myeloid Diseases. Biology of Blood and Marrow Transplantation, 2017, 23, S273.	2.0	0
72	Co-Stimulatory Regulation of CAR T Cell Function. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S43-S44.	0.4	0

#	Article	IF	CITATIONS
73	Advances in CAR T cell clinical development. Best Practice and Research in Clinical Haematology, 2021, 34, 101307.	1.7	0
74	Conditioning Intensity and T Cell Dose Determine Efficacy of CD19-Targeted T Cell-Mediated Tumor Eradication in an Immunocompetent Mouse Model of B-ALL Blood, 2012, 120, 2613-2613.	1.4	0
75	The Latest Advances in CAR T-Cell Therapy for Refractory and Relapsed Lymphomas and Leukemias. Journal of the Advanced Practitioner in Oncology, 2017, 8, .	0.4	0
76	Transverse myelitis after anti D19 directed CAR T cell therapy for relapsed large B cell lymphoma. EJHaem, 2022, 3, 223-227.	1.0	0