Juarez A.S. Quaresma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5395534/publications.pdf Version: 2024-02-01

	257101	22102
16,465	24	113
citations	h-index	g-index
122	122	38348
docs citations	times ranked	citing authors
	citations 122	16,46524citationsh-index122122

#	Article	IF	CITATIONS
1	In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Scientific Reports, 2018, 8, 1.	1.6	14,531
2	Revisiting the liver in human yellow fever: Virus-induced apoptosis in hepatocytes associated with TGF-β, TNF-α and NK cells activity. Virology, 2006, 345, 22-30.	1.1	114
3	HTLV-1, Immune Response and Autoimmunity. Viruses, 2016, 8, 5.	1.5	96
4	Immunity and immune response, pathology and pathologic changes: progress and challenges in the immunopathology of yellow fever. Reviews in Medical Virology, 2013, 23, 305-318.	3.9	75
5	Zika virus epidemic in Brazil. I. Fatal disease in adults: Clinical and laboratorial aspects. Journal of Clinical Virology, 2016, 85, 56-64.	1.6	74
6	Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clinical Microbiology Reviews, 2019, 32, .	5.7	74
7	Leprosy As a Complex Infection: Breakdown of the Th1 and Th2 Immune Paradigm in the Immunopathogenesis of the Disease. Frontiers in Immunology, 2017, 8, 1635.	2.2	67
8	Hepatocyte lesions and cellular immune response in yellow fever infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2007, 101, 161-168.	0.7	58
9	Reconsideration of histopathology and ultrastructural aspects of the human liver in yellow fever. Acta Tropica, 2005, 94, 116-127.	0.9	53
10	In situ expression of M2 macrophage subpopulation in leprosy skin lesions. Acta Tropica, 2016, 157, 108-114.	0.9	46
11	In situ inflammasome activation results in severe damage to the central nervous system in fatal Zika virus microcephaly cases. Cytokine, 2018, 111, 255-264.	1.4	44
12	Immunopathogenesis of HTLV-1-assoaciated myelopathy/tropical spastic paraparesis (HAM/TSP). Life Sciences, 2014, 104, 9-14.	2.0	43
13	Immunopathogenesis of dengue hemorrhagic fever: Contribution to the study of human liver lesions. Journal of Medical Virology, 2014, 86, 1193-1197.	2.5	43
14	Nerve Growth Factor and Pathogenesis of Leprosy: Review and Update. Frontiers in Immunology, 2018, 9, 939.	2.2	38
15	Human kidney damage in fatal dengue hemorrhagic fever results of glomeruli injury mainly induced by IL17. Journal of Clinical Virology, 2016, 75, 16-20.	1.6	35
16	Midzonal lesions in yellow fever: A specific pattern of liver injury caused by direct virus action and in situ inflammatory response. Medical Hypotheses, 2006, 67, 618-621.	0.8	33
17	First isolation of West Nile virus in Brazil. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e180332.	0.8	33
18	Correlation between Apoptosis and in Situ Immune Response in Fatal Cases of Microcephaly Caused by Zika Virus. American Journal of Pathology, 2018, 188, 2644-2652.	1.9	32

#	Article	IF	CITATIONS
19	Macrophage and TGF-β immunohistochemical expression in Jorge Lobo's disease. Human Pathology, 2008, 39, 269-274.	1.1	31
20	Immunohistochemical examination of the role of Fas ligand and lymphocytes in the pathogenesis of human liver yellow fever. Virus Research, 2006, 116, 91-97.	1.1	30
21	In situ apoptosis of adaptive immune cells and the cellular escape of rabies virus in CNS from patients with human rabies transmitted by Desmodus rotundus. Virus Research, 2011, 156, 121-126.	1.1	29
22	<p>Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases</p> . Infection and Drug Resistance, 2019, Volume 12, 2589-2611.	1.1	28
23	Lessons from dermatology about inflammatory responses in Covidâ€19. Reviews in Medical Virology, 2020, 30, e2130.	3.9	28
24	Evaluation of two molecular methods for the detection of Yellow fever virus genome. Journal of Virological Methods, 2011, 174, 29-34.	1.0	26
25	Some aspects of the behavior of the hypothalamus–pituitary–adrenal axis in patients with uncomplicated Plasmodium falciparum malaria: Cortisol and dehydroepiandrosterone levels. Acta Tropica, 2006, 98, 270-276.	0.9	25
26	Immunohistochemical characterization of the M4 macrophage population in leprosy skin lesions. BMC Infectious Diseases, 2018, 18, 576.	1.3	25
27	Revisiting the Clinical and Histopathological Aspects of Patients with Chromoblastomycosis from the Brazilian Amazon Region. Archives of Medical Research, 2013, 44, 302-306.	1.5	23
28	Zika Virus Epidemic in Brazil. II. Post-Mortem Analyses of Neonates with Microcephaly, Stillbirths, and Miscarriage. Journal of Clinical Medicine, 2018, 7, 496.	1.0	23
29	CD1a and Factor XIIIa Immunohistochemistry in Leprosy: A Possible Role of Dendritic Cells in the Pathogenesis of Mycobacterium leprae Infection. American Journal of Dermatopathology, 2009, 31, 527-531.	0.3	22
30	New immunologic pathways in the pathogenesis of leprosy: Role for Th22 cytokines in the polar forms of the disease. Journal of the American Academy of Dermatology, 2015, 72, 729-730.	0.6	22
31	Muscle dysfunction in the long coronavirus disease 2019 syndrome: Pathogenesis and clinical approach. Reviews in Medical Virology, 2022, 32, e2355.	3.9	22
32	Clinical, epidemiological and mycological report on 65 patients from the Eastern Amazon region with chromoblastomycosis. Anais Brasileiros De Dermatologia, 2012, 87, 555-560.	0.5	21
33	Human T Lymphotropic Virus and Pulmonary Diseases. Frontiers in Microbiology, 2018, 9, 1879.	1.5	21
34	Th9 cytokines response and its possible implications in the immunopathogenesis of leprosy. Journal of Clinical Pathology, 2017, 70, 521-527.	1.0	19
35	CT Chest and pulmonary functional changes in patients with HTLV-associated myelopathy in the Eastern Brazilian Amazon. PLoS ONE, 2017, 12, e0186055.	1.1	19
36	NADPH-diaphorase activity in area 17 of the squirrel monkey visual cortex: neuropil pattern, cell morphology and laminar distribution. Brazilian Journal of Medical and Biological Research, 1997, 30, 1093-1105.	0.7	16

#	Article	IF	CITATIONS
37	HIV and Lacaziosis, Brazil. Emerging Infectious Diseases, 2006, 12, 526-527.	2.0	16
38	Transforming growth factor Î ² and apoptosis in leprosy skin lesions: possible relationship with the control of the tissue immune response in the Mycobacterium leprae infection. Microbes and Infection, 2012, 14, 696-701.	1.0	15
39	Correlation between nerve growth factor and tissue expression of IL-17 in leprosy. Microbial Pathogenesis, 2016, 90, 64-68.	1.3	15
40	Endothelium adhesion molecules ICAM-1, ICAM-2, VCAM-1 and VLA-4 expression in leprosy. Microbial Pathogenesis, 2017, 104, 116-124.	1.3	15
41	Upregulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in renal tissue in severe dengue in humans: Effects on endothelial activation/dysfunction. Revista Da Sociedade Brasileira De Medicina Tropical, 2019, 52, e20180353.	0.4	15
42	Langerhans cells (CD1a and CD207), dermal dendrocytes (FXIIIa) and plasmacytoid dendritic cells (CD123) in skin lesions of leprosy patients. Microbial Pathogenesis, 2016, 91, 18-25.	1.3	14
43	Response of iNOS and its relationship with IL-22 and STAT3 in macrophage activity in the polar forms of leprosy. Acta Tropica, 2017, 171, 74-79.	0.9	14
44	Relationship between growth factors and its implication in the pathogenesis of leprosy. Microbial Pathogenesis, 2014, 77, 66-72.	1.3	13
45	Plasmacytoid dendritic cells in cutaneous lesions of patients with chromoblastomycosis, lacaziosis, and paracoccidioidomycosis: a comparative analysis. Medical Mycology, 2014, 52, 397-402.	0.3	13
46	Neurological manifestations in individuals with HTLV-1-associated myelopathy/tropical spastic paraparesis in the Amazon. Spinal Cord, 2016, 54, 154-157.	0.9	13
47	Characterization of Minaçu virus (Reoviridae: Orbivirus) and pathological changes in experimentally infected newborn mice. International Journal of Experimental Pathology, 2007, 88, 63-73.	0.6	12
48	Full-length sequencing and genetic characterization of Breu Branco virus (Reoviridae, Orbivirus) and two related strains isolated from Anopheles mosquitoes. Journal of General Virology, 2009, 90, 2183-2190.	1.3	12
49	Immunohistochemical evaluation of macrophage activity and its relationship with apoptotic cell death in the polar forms of leprosy. Microbial Pathogenesis, 2010, 49, 135-140.	1.3	12
50	Tâ€helper 17 cytokines expression in leprosy skin lesions. British Journal of Dermatology, 2015, 173, 565-567.	1.4	12
51	Correlation between clinical symptoms and peripheral immune response in HAM/TSP. Microbial Pathogenesis, 2016, 92, 72-75.	1.3	12
52	Endoplasmic Reticulum Stress Markers and Their Possible Implications in Leprosy's Pathogenesis. Disease Markers, 2018, 2018, 1-10.	0.6	12
53	Immunohistochemical study of Langerhans cells in cutaneous lesions of the Jorge Lobo's disease. Acta Tropica, 2010, 114, 59-62.	0.9	11
54	Immunohistochemical analysis of the expression of TNF-alpha, TGF-beta, and caspase-3 in subcutaneous tissue of patients with HIV Lipodystrophy Syndrome. Microbial Pathogenesis, 2014, 67-68, 41-47.	1.3	11

#	Article	IF	CITATIONS
55	The role of T helper 25Âcells in the immune response to Mycobacterium leprae. Journal of the American Academy of Dermatology, 2018, 78, 1009-1011.	0.6	11
56	Genetic characterization of orthobunyavirus Melao, strains BE AR633512 and BE AR8033, and experimental infection in golden hamsters (Mesocricetus auratus). Journal of General Virology, 2009, 90, 223-233.	1.3	10
57	Pathogenic action of Plasmodium gallinaceum in chickens: Brain histology and nitric oxide production by blood monocyte-derived macrophages. Veterinary Parasitology, 2010, 172, 16-22.	0.7	10
58	Human papillomavirus: Prevalence and factors associated in women prisoners population from the Eastern Brazilian Amazon. Journal of Medical Virology, 2014, 86, 1528-1533.	2.5	10
59	The inflammasome in leprosy skin lesions: an immunohistochemical evaluation. Infection and Drug Resistance, 2018, Volume 11, 2231-2240.	1.1	10
60	The innate immune response in Zika virus infection. Reviews in Medical Virology, 2021, 31, e2166.	3.9	10
61	Apoptotic activity and Treg cells in tissue lesions of patients with leprosy. Microbial Pathogenesis, 2014, 76, 84-88.	1.3	9
62	<p>Leprosy Reactions In Childhood: A Prospective Cohort Study In The Brazilian Amazon</p> . Infection and Drug Resistance, 2019, Volume 12, 3249-3257.	1.1	9
63	Characterization of the Gamboa Virus Serogroup (Orthobunyavirus Genus, Peribunyaviridae Family). American Journal of Tropical Medicine and Hygiene, 2018, 98, 1502-1511.	0.6	9
64	ls TGF-β important for the evolution of subcutaneuos chronic mycoses?. Medical Hypotheses, 2008, 70, 1182-1185.	0.8	8
65	Immunohistochemical analysis of the expression of cellular transcription NFκB (p65), AP-1 (c-Fos and) Tj ETQq1	1 0,78431 1.1	4 rgBT /Overl
66	Cryptococcosis in the Amazon: A current overview and future perspectives. Acta Tropica, 2019, 197, 105023.	0.9	8
67	Prevalence of viral hepatitis B and C in riverside communities of the TucuruÃ-Dam, ParÃ _i , Brazil. Journal of Medical Virology, 2012, 84, 1907-1912.	2.5	7
68	E-selectin and P-selectin expression in endothelium of leprosy skin lesions. Acta Tropica, 2015, 149, 227-231.	0.9	7
69	<p>Cell Death And Zika Virus: An Integrated Network Of The Mechanisms Of Cell Injury</p> . Infection and Drug Resistance, 2019, Volume 12, 2917-2921.	1.1	7
70	Yellow fever virus modulates cytokine mRNA expression and induces activation of caspase 3/7 in the human hepatocarcinoma cell line HepG2. Archives of Virology, 2019, 164, 1187-1192.	0.9	7
71	Tissue immunostaining for factor XIIIa in dermal dendrocytes of pityriasis alba skin lesions. Anais Brasileiros De Dermatologia, 2014, 89, 245-248.	0.5	6
72	Expression of interleukin-1β and interleukin-6 in leprosy reactions in patients with human immunodeficiency virus coinfection. Acta Tropica, 2017, 172, 213-216.	0.9	6

#	Article	IF	CITATIONS
73	Inflammatory and Immune-Mediated Cutaneous Diseases. Mediators of Inflammation, 2017, 2017, 1-2.	1.4	6
74	HTLV-I induces lesions in the pulmonary system: A systematic review. Life Sciences, 2020, 256, 117979.	2.0	6
75	Persistence of experimental Rocio virus infection in the golden hamster (Mesocricetus auratus). Memorias Do Instituto Oswaldo Cruz, 2012, 107, 630-636.	0.8	5
76	Th17 and regulatory T cells contribute to thein situimmune response in skin lesions of Jorge Lobo's disease. Medical Mycology, 2015, 54, myv069.	0.3	5
77	Nerve Damage in Young Patients with Leprosy Diagnosed in an Endemic Area of the Brazilian Amazon: A Cross-Sectional Study. Journal of Pediatrics, 2017, 185, 143-148.	0.9	5
78	Mechanisms of human cytomegalovirus infection with a focus on epidermal growth factor receptor interactions. Reviews in Medical Virology, 2017, 27, e1955.	3.9	5
79	Correlation between therapy and lipid profile of leprosy patients: is there a higher risk for developing cardiovascular diseases after treatment?. Infectious Diseases of Poverty, 2017, 6, 82.	1.5	5
80	IL-37 and leprosy: A novel cytokine involved in the host response to Mycobacterium leprae infection. Cytokine, 2018, 106, 89-94.	1.4	5
81	Experimental infection of golden hamsters with Guama virus (Peribunyaviridae, Orthobunyavirus). Microbial Pathogenesis, 2019, 135, 103627.	1.3	5
82	Early and Late Pathogenic Events of Newborn Mice Encephalitis Experimentally Induced by Itacaiunas and CurionÃ ³ polis Bracorhabdoviruses Infection. PLoS ONE, 2008, 3, e1733.	1.1	5
83	Endothelium Activation during Severe Yellow Fever Triggers an Intense Cytokine-Mediated Inflammatory Response in the Liver Parenchyma. Pathogens, 2022, 11, 101.	1.2	5
84	Environmental impact and seroepidemiology of HTLV in two communities in the eastern Brazilian amazon. Journal of Medical Virology, 2013, 85, 1585-1590.	2.5	4
85	Differences in virulence markers between Helicobacter pylori strains from the Brazilian Amazon region. Revista Da Sociedade Brasileira De Medicina Tropical, 2013, 46, 358-361.	0.4	4
86	M2-Polarized Macrophages Determine Human Cutaneous Lesions in Lacaziosis. Mycopathologia, 2020, 185, 477-483.	1.3	4
87	Characterization in vivo and in vitro of a strain of Leishmania (Viannia) shawi from the Amazon Region. Parasitology International, 2009, 58, 154-160.	0.6	3
88	Immunohistochemistry of the uterine cervix of rats bearing the Walker 256 tumor treated with copaiba balsam. Acta Cirurgica Brasileira, 2013, 28, 185-189.	0.3	3
89	Disseminated infection with Lacazia loboi and immunopathology of the lesional spectrum. Human Pathology, 2015, 46, 334-338.	1.1	3
90	Analysis of microvasculature phenotype and endothelial activation markers in skin lesions of lacaziosis (Lobomycosis). Microbial Pathogenesis, 2015, 78, 29-36.	1.3	3

#	Article	IF	CITATIONS
91	The cytotoxic T cells may contribute to the<i>in situ</i>immune response in Jorge Lobo's Disease human lesions . Medical Mycology, 2017, 55, 145-149.	0.3	3
92	Protein profile of leprosy patients with plantar ulcers from the Eastern Amazon region. Infectious Diseases of Poverty, 2017, 6, 105.	1.5	3
93	In situ detection of Chlamydia pneumoniae, C. trachomatis, and cytokines among cardiovascular diseased patients from the Amazon region of Brazil. Infection and Drug Resistance, 2017, Volume 10, 109-114.	1.1	3
94	Changes in lung function in patients with human T cell lymphotropic virus (HTLV) associated myelopathy residents in the eastern Brazilian Amazon. , 2016, , .		3
95	Different cell death mechanisms are involved in leprosy pathogenesis. Microbial Pathogenesis, 2022, 166, 105511.	1.3	3
96	Tissue expression of TGF-β1 in uterine cervical samples from HIV/AIDS patients. Microbial Pathogenesis, 2012, 53, 44-48.	1.3	2
97	Prevalence of autoantibodies against cellular antigens in patients with HIV and leprosy coinfection in the Amazon region. Infectious Diseases of Poverty, 2017, 6, 80.	1.5	2
98	Parvovirus B19 and in situ immune response in eczema and psoriasis skin lesions of patients from the Brazilian Amazon region. Microbial Pathogenesis, 2018, 117, 27-31.	1.3	2
99	Incomplete myelopathy and human T cell lymphotropic virus type-1 (HTLV-1). Journal of NeuroVirology, 2019, 25, 1-8.	1.0	2
100	The complexity of respiratory disease associated with severe acute respiratory syndrome coronavirus 2 (SARSâ€CoVâ€2) infection: From immunopathogenesis to respiratory therapy. Reviews in Medical Virology, 2021, 31, e2167.	3.9	2
101	Adverse events of the yellow fever vaccine in chronic urticaria: evaluation of patients treated or not with omalizumab compared to healthy individuals. Anais Brasileiros De Dermatologia, 2021, 96, 497-499.	0.5	2
102	GENDER, AGE, ENDOSCOPIC FINDINGS, UREASE AND HELICOBACTER PYLORI: ALL UNCORRELATED WITHIN A SAMPLE OF A HIGH GASTRIC CANCER PREVALENCE POPULATION IN AMAZON. Arquivos De Gastroenterologia, 2019, 56, 264-269.	0.3	2
103	Computed tomography with 6-year follow-up demonstrates the evolution of HTLV-1 related lung injuries: A cohort study. PLoS ONE, 2021, 16, e0261864.	1.1	2
104	Jorge Lobo's Disease: Immunohistochemical Characterization of Dendritic Cells in Cutaneous Lesions. Mycopathologia, 2015, 179, 269-274.	1.3	1
105	NFκB transcription factor (p65) immunohistochemistry in leprosy dermal microvasculature. Microbial Pathogenesis, 2017, 113, 427-431.	1.3	1
106	Langerin (CD207)-positive cells in leprosy: Possible implications for pathogenesis of the disease with special emphasis on dermal immunoreactivity. Microbial Pathogenesis, 2018, 124, 1-4.	1.3	1
107	Doppler ultrasonography: A nonâ€invasive method used to diagnose and follow up patients with chronic hepatitis C. Journal of Gastroenterology and Hepatology (Australia), 2020, 35, 314-319.	1.4	1
108	Meanings and senses of being a health professional with tuberculosis: an interpretative phenomenological study. BMJ Open, 2020, 10, e035873.	0.8	1

#	Article	IF	CITATIONS
109	A protocol of hepatic volume measurement using magnetic resonance imaging in individuals from the Eastern Brazilian Amazon population. PLoS ONE, 2020, 15, e0229525.	1.1	1
110	Decrease in naÃ⁻ve T cell production due to HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) development. Immunobiology, 2021, 226, 152050.	0.8	1
111	Early and late neuropathological features of meningoencephalitis associated with Maraba virus infection. Brazilian Journal of Medical and Biological Research, 2020, 53, e8604.	0.7	1
112	The Presence of Mycobacterium leprae in Wild Rodents. Microorganisms, 2022, 10, 1114.	1.6	1
113	Assessment of the treatment of chronic hepatitis C virus infection: a case series from a hospital in the Brazilian Amazon region. Brazilian Journal of Infectious Diseases, 2014, 18, 233-234.	0.3	Ο
114	Anthropometric parameters as alternatives to identify visceral fat and cardiovascular risk in hepatitis C patients. Research, Society and Development, 2022, 11, e27011225829.	0.0	0
115	Controle e prevenção das hepatites B e C na gravidez segundo profissionais da saúde. Research, Society and Development, 2022, 11, e6511326160.	0.0	Ο
116	Hepatitis C virus eradication on glycemic control and insulin resistance. Revista Da Associação Médica Brasileira, 2021, 67, 1821-1824.	0.3	0
117	Factors Involved in the Apoptotic Cell Death Mechanism in Yellow Fever Hepatitis. Viruses, 2022, 14, 1204.	1.5	0
118	Cryptococcosis: Identification of Risk Areas in the Brazilian Amazon. Microorganisms, 2022, 10, 1411.	1.6	0