Michael W Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/539517/publications.pdf

Version: 2024-02-01

65 papers 5,553 citations

33 h-index 65 g-index

70 all docs

70 docs citations

times ranked

70

7020 citing authors

#	Article	IF	CITATIONS
1	A trans-spliced leader sequence on actin mRNA in C. elegans. Cell, 1987, 49, 753-761.	28.9	683
2	O-Linked GlcNAc Transferase Is a Conserved Nucleocytoplasmic Protein Containing Tetratricopeptide Repeats. Journal of Biological Chemistry, 1997, 272, 9316-9324.	3.4	462
3	linking metabolism to epigenetics through O-GlcNAcylation. Nature Reviews Molecular Cell Biology, 2012, 13, 312-321.	37.0	364
4	Scalable and Versatile Genome Editing Using Linear DNAs with Microhomology to Cas9 Sites in <i>Caenorhabditis elegans</i> Caenorhabditis elegans	2.9	292
5	The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 80-95.	2.4	284
6	Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature, 2008, 453, 1127-1131.	27.8	275
7	The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos. Cell, 1992, 70, 163-176.	28.9	231
8	CeMyoD accumulation defines the body wall muscle cell fate during C. elegans embryogenesis. Cell, 1990, 63, 907-919.	28.9	211
9	A Caenorhabditis elegans model of insulin resistance: Altered macronutrient storage and dauer formation in an OGT-1 knockout. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11266-11271.	7.1	208
10	RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO Journal, 2002, 21, 6025-6035.	7.8	196
11	Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11952-11957.	7.1	151
12	Dynamic O-GlcNAc cycling at promoters of <i>Caenorhabditis elegans</i> genes regulating longevity, stress, and immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7413-7418.	7.1	136
13	ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. Developmental Biology, 2009, 327, 551-565.	2.0	129
14	Sequence analysis of the complete Caenorhabditis elegans myosin heavy chain gene family. Journal of Molecular Biology, 1989, 205, 603-613.	4.2	113
15	The myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos. Development (Cambridge), 2005, 132, 1795-1805.	2.5	103
16	O-GlcNAc cycling: Emerging roles in development and epigenetics. Seminars in Cell and Developmental Biology, 2010, 21, 646-654.	5.0	101
17	Elements Regulating Cell- and Stage-Specific Expression of the C. elegans MyoD Family Homolog hlh-1. Developmental Biology, 1994, 166, 133-148.	2.0	99
18	Defining the transcriptional redundancy of early bodywall muscle development in C. elegans: evidence for a unified theory of animal muscle development. Genes and Development, 2006, 20, 3395-3406.	5.9	98

#	Article	IF	CITATIONS
19	Dopamine and Glutamate Induce Distinct Striatal Splice Forms of Ania-6, an RNA Polymerase II-Associated Cyclin. Neuron, 2001, 32, 277-287.	8.1	91
20	Wild-type and mutant actin genes in Caenorhabditis elegans. Journal of Molecular Biology, 1989, 208, 381-392.	4.2	90
21	O-GlcNAc cycling mutants modulate proteotoxicity in <i>Caenorhabditis elegans</i> models of human neurodegenerative diseases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17669-17674.	7.1	86
22	Selenocysteine-Containing Thioredoxin Reductase in C. elegans. Biochemical and Biophysical Research Communications, 1999, 259, 244-249.	2.1	82
23	The embryonic muscle transcriptome of Caenorhabditis elegans. Genome Biology, 2007, 8, R188.	8.8	75
24	<i>O-Linked- $<$ i>N-Acetylglucosamine Cycling and Insulin Signaling Are Required for the Glucose Stress Response in <i>Caenorhabditis elegans</i> - Genetics, 2011, 188, 369-382.	2.9	66
25	Insulinoma-Associated Protein IA-2, a Vesicle Transmembrane Protein, Genetically Interacts with UNC-31/CAPS and Affects Neurosecretion in Caenorhabditis elegans. Journal of Neuroscience, 2004, 24, 3115-3124.	3.6	63
26	Cyclin E expression during development in caenorhabditis elegans. Developmental Biology, 2003, 254, 102-115.	2.0	53
27	NHR-23 dependent collagen and hedgehog-related genes required for molting. Biochemical and Biophysical Research Communications, 2011, 413, 515-520.	2.1	49
28	DNA rearrangements of the actin gene cluster in Caenorhabditis-elegans accompany reversion of three muscle mutants. Journal of Molecular Biology, 1984, 180, 497-513.	4.2	48
29	Evolutionary Conservation of MyoD Function and Differential Utilization of E Proteins. Developmental Biology, 1999, 208, 465-472.	2.0	42
30	Use of an Activated Beta-Catenin to Identify Wnt Pathway Target Genes in <i>Caenorhabditis elegans </i> , Including a Subset of Collagen Genes Expressed in Late Larval Development. G3: Genes, Genomes, Genetics, 2014, 4, 733-747.	1.8	39
31	Caudal-like PAL-1 directly activates the bodywall muscle module regulator <i>hlh-1</i> in <i>C. elegans</i> to initiate the embryonic muscle gene regulatory network. Development (Cambridge), 2009, 136, 1241-1249.	2.5	38
32	Chapter 20 Transcription and Translation. Methods in Cell Biology, 1995, , 483-512.	1.1	37
33	Heme Utilization in the Caenorhabditis elegans Hypodermal Cells Is Facilitated by Heme-responsive Gene-2. Journal of Biological Chemistry, 2012, 287, 9601-9612.	3.4	37
34	The MADS-Box Factor CeMEF2 Is Not Essential for Caenorhabditis elegans Myogenesis and Development. Developmental Biology, 2000, 223, 431-440.	2.0	34
35	Transcriptional regulation of gene expression in C. elegans. WormBook, 2013, , 1-31.	5. 3	34
36	Genome-Wide Analysis Reveals Novel Genes Essential for Heme Homeostasis in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1001044.	3.5	32

#	Article	IF	CITATIONS
37	Chapter 21 Techniques for Analyzing Transcription and Translation. Methods in Cell Biology, 1995, 48, 513-529.	1.1	27
38	A Novel H+-coupled Oligopeptide Transporter (OPT3) from Caenorhabditis elegans with a Predominant Function as a H+ Channel and an Exclusive Expression in Neurons. Journal of Biological Chemistry, 2000, 275, 9563-9571.	3.4	27
39	MyoD and myogenesis inC. elegans. BioEssays, 1995, 17, 219-228.	2.5	26
40	Promotion of Bone Morphogenetic Protein Signaling by Tetraspanins and Glycosphingolipids. PLoS Genetics, 2015, 11, e1005221.	3.5	26
41	Perilipin-related protein regulates lipid metabolism in <i>C. elegans</i> . PeerJ, 2015, 3, e1213.	2.0	25
42	A Widespread Distribution of Genomic CeMyoD Binding Sites Revealed and Cross Validated by ChIP-Chip and ChIP-Seq Techniques. PLoS ONE, 2010, 5, e15898.	2.5	24
43	A Genetic Analysis of the <i>Caenorhabditis elegans</i> Detoxification Response. Genetics, 2017, 206, 939-952.	2.9	21
44	Inter-organ signalling by HRG-7 promotes systemic haem homeostasis. Nature Cell Biology, 2017, 19, 799-807.	10.3	21
45	Hrg1 promotes heme-iron recycling during hemolysis in the zebrafish kidney. PLoS Genetics, 2018, 14, e1007665.	3.5	21
46	Characterization of a dominant negative <i>C. elegans </i> Twist mutant protein with implications for human Saethre-Chotzen syndrome. Development (Cambridge), 2002, 129, 2761-2772.	2.5	20
47	Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2015, 5, 1551-1566.	1.8	18
48	Functional conservation of nematode and vertebrate myogenic regulatory factors. Journal of Cell Science, 1992, 1992, 111-115.	2.0	17
49	Transgenic C. elegans Dauer Larvae Expressing Hookworm Phospho Null DAF-16/FoxO Exit Dauer. PLoS ONE, 2011, 6, e25996.	2.5	16
50	Disruption of O-GlcNAc Cycling in C. elegans Perturbs Nucleotide Sugar Pools and Complex Glycans. Frontiers in Endocrinology, 2014, 5, 197.	3.5	15
51	X Chromosome Crossover Formation and Genome Stability in <i>Caenorhabditis elegans</i> Are Independently Regulated by <i>xnd-1</i> . G3: Genes, Genomes, Genetics, 2016, 6, 3913-3925.	1.8	15
52	Nutrient-Driven O-GlcNAcylation at Promoters Impacts Genome-Wide RNA Pol II Distribution. Frontiers in Endocrinology, 2018, 9, 521.	3.5	13
53	Somatic muscle specification during embryonic and postâ€embryonic development in the nematode <i>C. elegans</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 203-214.	5.9	11
54	The Paired-box protein PAX-3 regulates the choice between lateral and ventral epidermal cell fates in C. elegans. Developmental Biology, 2016, 412, 191-207.	2.0	11

#	Article	IF	CITATIONS
55	<i>Caenorhabditis elegans</i> JOAF-2 as a Model for Human Insulin Receptoropathies. G3: Genes, Genomes, Genetics, 2017, 7, 257-268.	1.8	10
56	Loss of the Transcriptional Repressor PAG-3/Gfi-1 Results in Enhanced Neurosecretion that is Dependent on the Dense-Core Vesicle Membrane Protein IDA-1/IA-2. PLoS Genetics, 2009, 5, e1000447.	3.5	9
57	Multiple Ribonuclease H–Encoding Genes in the Caenorhabditis elegans Genome Contrasts with the Two Typical Ribonuclease H–Encoding Genes in the Human Genome. Molecular Biology and Evolution, 2002, 19, 1910-1919.	8.9	7
58	New Roles for the Heterochronic Transcription Factor LIN-29 in Cuticle Maintenance and Lipid Metabolism at the Larval-to-Adult Transition in $\langle i \rangle$ Caenorhabditis elegans $\langle i \rangle$. Genetics, 2020, 214, 669-690.	2.9	7
59	GEI-8, a Homologue of Vertebrate Nuclear Receptor Corepressor NCoR/SMRT, Regulates Gonad Development and Neuronal Functions in Caenorhabditis elegans. PLoS ONE, 2013, 8, e58462.	2.5	7
60	Myogenic conversion and transcriptional profiling of embryonic blastomeres in Caenorhabditis elegans. Methods, 2012, 56, 50-54.	3.8	6
61	Regulation of UNC-130/FOXD-mediated mesodermal patterning in C. elegans. Developmental Biology, 2016, 416, 300-311.	2.0	6
62	Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function. Biochemical and Biophysical Research Communications, 2008, 374, 49-54.	2.1	5
63	Diversification of fasting regulated transcription in a cluster of duplicated nuclear hormone receptors in C. elegans. Gene Expression Patterns, 2010, 10, 227-236.	0.8	5
64	C. elegans Genetic Networks Predict Roles for O-GlcNAc Cycling in Key Signaling Pathways. Current Signal Transduction Therapy, 2010, 5, 60-73.	0.5	2
65	Cell Fate Determination in Caenorhabditis elegans. , 1999, , 251-267.		1