Indunil Angunawela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/539413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nature Communications, 2021, 12, 5264.	12.8	170
2	Highâ€Efficiency Allâ€Smallâ€Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilylâ€Thienyl Conjugated Side Chains. Advanced Materials, 2018, 30, e1706361.	21.0	154
3	Highâ€Performance Allâ€Polymer Solar Cells: Synthesis of Polymer Acceptor by a Random Ternary Copolymerization Strategy. Angewandte Chemie - International Edition, 2020, 59, 15181-15185.	13.8	136
4	Alkyl hain Branching of Nonâ€Fullerene Acceptors Flanking Conjugated Side Groups toward Highly Efficient Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102596.	19.5	125
5	High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nature Communications, 2021, 12, 178.	12.8	122
6	A Difluoroâ€Monobromo End Group Enables Highâ€Performance Polymer Acceptor and Efficient Allâ€Polymer Solar Cells Processable with Green Solvent under Ambient Condition. Advanced Functional Materials, 2021, 31, 2100791.	14.9	89
7	16.52% Efficiency Allâ€Polymer Solar Cells with High Tolerance of the Photoactive Layer Thickness. Advanced Materials, 2022, 34, e2108749.	21.0	63
8	High-Performance 3-D Fiber Network Composite Electrolyte Enabled with Li-Ion Conducting Nanofibers and Amorphous PEO-Based Cross-Linked Polymer for Ambient All-Solid-State Lithium-Metal Batteries. Advanced Fiber Materials, 2019, 1, 46-60.	16.1	59
9	Effect of the chlorine substitution position of the end-group on intermolecular interactions and photovoltaic performance of small molecule acceptors. Energy and Environmental Science, 2020, 13, 5028-5038.	30.8	56
10	Effects of Shortâ€Axis Alkoxy Substituents on Molecular Selfâ€Assembly and Photovoltaic Performance of Indacenodithiopheneâ€Based Acceptors. Advanced Functional Materials, 2020, 30, 1906855.	14.9	50
11	Introducing Low ost Pyrazine Unit into Terpolymer Enables Highâ€Performance Polymer Solar Cells with Efficiency of 18.23%. Advanced Functional Materials, 2022, 32, 2109271.	14.9	49
12	Synergistic Use of Pyridine and Selenophene in a Diketopyrrolopyrroleâ€Based Conjugated Polymer Enhances the Electron Mobility in Organic Transistors. Advanced Functional Materials, 2020, 30, 2000489.	14.9	43
13	Green solvent-processed organic solar cells based on a low cost polymer donor and a small molecule acceptor. Journal of Materials Chemistry C, 2020, 8, 7718-7724.	5.5	40
14	Improvement of Photovoltaic Performance of Polymer Solar Cells by Rational Molecular Optimization of Organic Molecule Acceptors. Advanced Energy Materials, 2018, 8, 1800815.	19.5	36
15	Precise Control of Phase Separation Enables 12% Efficiency in All Small Molecule Solar Cells. Advanced Energy Materials, 2020, 10, 2001589.	19.5	33
16	Competition between Exceptionally Longâ€Range Alkyl Sidechain Ordering and Backbone Ordering in Semiconducting Polymers and Its Impact on Electronic and Optoelectronic Properties. Advanced Functional Materials, 2019, 29, 1806977.	14.9	31
17	Effect of Replacing Thiophene by Selenophene on the Photovoltaic Performance of Wide Bandgap Copolymer Donors. Macromolecules, 2019, 52, 4776-4784.	4.8	26
18	The Critical Role of Materials' Interaction in Realizing Organic Field-Effect Transistors Via High-Dilution Blending with Insulating Polymers. ACS Applied Materials & Interfaces, 2020, 12, 26239-26249.	8.0	22

INDUNIL ANGUNAWELA

#	Article	IF	CITATIONS
19	Highâ€Performance Allâ€Polymer Solar Cells: Synthesis of Polymer Acceptor by a Random Ternary Copolymerization Strategy. Angewandte Chemie, 2020, 132, 15293-15297.	2.0	18
20	Investigating the active layer thickness dependence of non-fullerene organic solar cells based on PM7 derivatives. Journal of Materials Chemistry C, 2020, 8, 15459-15469.	5.5	16
21	Multi-length scale morphology of nonfullerene all-small molecule blends and its relation to device function in organic solar cells. Materials Chemistry Frontiers, 2019, 3, 137-144.	5.9	12
22	Effect of main and side chain chlorination on the photovoltaic properties of benzodithiophene- <i>alt</i> -benzotriazole polymers. Journal of Materials Chemistry C, 2020, 8, 15426-15435.	5.5	10
23	High voltage all polymer solar cells with a polymer acceptor based on NDI and benzotriazole. Journal of Materials Chemistry C, 2019, 7, 9031-9037.	5.5	7
24	Ultrathin P(NDI2ODâ€T2) Films with High Electron Mobility in Both Bottomâ€Gate and Topâ€Gate Transistors. Advanced Electronic Materials, 2022, 8, .	5.1	7
25	Competition between exceptionally long-range alkyl sidechain ordering and backbone ordering in semiconducting polymers and its impact on electronic and optoelectronic properties. Advanced Functional Materials, 2018, 29	14.9	0