
Christopher S Winefield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5392979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2009, 2, 621-624.	12.9	735
2	Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiology Ecology, 2010, 72, 386-394.	2.7	419
3	Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry, 2002, 59, 23-32.	2.9	250
4	Anthocyanic vacuolar inclusions— their nature and significance in flower colouration. Phytochemistry, 2000, 55, 327-336.	2.9	191
5	Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Functional Plant Biology, 2010, 37, 767.	2.1	126
6	Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia-oxidizing bacteria and archaea. Journal of Soils and Sediments, 2010, 10, 943-954.	3.0	122
7	The Apoplastic Secretome of Trichoderma virens During Interaction With Maize Roots Shows an Inhibition of Plant Defence and Scavenging Oxidative Stress Secreted Proteins. Frontiers in Plant Science, 2018, 9, 409.	3.6	122
8	Flavonoids and UV Photoprotection in Arabidopsis Mutants. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2001, 56, 745-754.	1.4	112
9	From <scp>UVR</scp> 8 to flavonol synthase: <scp>UV</scp> â€ <scp>B</scp> â€induced gene expression in <scp>S</scp> auvignon blanc grape berry. Plant, Cell and Environment, 2015, 38, 905-919.	5.7	109
10	Effects of solar ultraviolet radiation and canopy manipulation on the biochemical composition of Sauvignon Blanc grapes. Australian Journal of Grape and Wine Research, 2012, 18, 227-238.	2.1	91
11	Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes. Trends in Plant Science, 2019, 24, 700-724.	8.8	80
12	A lysimeter study of nitrate leaching from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea. Soil Use and Management, 2009, 25, 454-461.	4.9	66
13	A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nature Genetics, 2022, 54, 84-93.	21.4	56
14	Investigation of the biosynthesis of 3-deoxyanthocyanins inSinningia cardinalis. Physiologia Plantarum, 2005, 124, 419-430.	5.2	49
15	Title is missing!. Molecular Breeding, 1999, 5, 543-551.	2.1	36
16	Evolutionary analysis of aspartate aminotransferases. Journal of Molecular Evolution, 1995, 40, 455-463.	1.8	34
17	Intraspecific differences in long-term drought tolerance in perennial ryegrass. PLoS ONE, 2018, 13, e0194977.	2.5	28
18	Characterisation of aurone biosynthesis in Antirrhinum majus. Physiologia Plantarum, 2006, 128, 593-603.	5.2	24

CHRISTOPHER S WINEFIELD

#	Article	IF	CITATIONS
19	Identification of suitable grapevine reference genes for qRT-PCR derived from heterologous species. Molecular Genetics and Genomics, 2016, 291, 483-492.	2.1	24
20	Genetic transformation of regal pelargonium (Pelargonium Xdomesticum â€~Dubonnet') by Agrobacterium tumefaciens. Plant Science, 1996, 121, 47-61.	3.6	22
21	Identification and functional characterisation of an allene oxide synthase from grapevine (Vitis) Tj ETQq1 1 0.784	1314 rgBT 2.3	/Overlock 10 21
22	Transgenic regal pelargoniums that express the rolC gene from Agrobacterium rhizogenes exhibit a dwarf floral and vegetative phenotype. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 46-50.	2.1	20
23	Effect of pruning system, cane size and season on inflorescence primordia initiation and inflorescence architecture of <i>Vitis vinifera</i> â€L. Sauvignon Blanc. Australian Journal of Grape and Wine Research, 2014, 20, 459-464.	2.1	20
24	Genetic Parameters and Breeding for Yield in Red Raspberry. Journal of the American Society for Horticultural Science, 2012, 137, 229-235.	1.0	19
25	The effects of cane girdling before budbreak on shoot growth, leaf area and carbohydrate content of Vitis vinifera L. Sauvignon Blanc grapevines. Functional Plant Biology, 2013, 40, 749.	2.1	17
26	The addition of an organosilicone surfactant to Agrobacterium suspensions enables efficient transient transformation of in vitro grapevine leaf tissue at ambient pressure. Plant Cell, Tissue and Organ Culture, 2015, 120, 607-615.	2.3	16
27	Methanotroph abundance not affected by applications of animal urine and a nitrification inhibitor, dicyandiamide, in six grazed grassland soils. Journal of Soils and Sediments, 2011, 11, 432-439.	3.0	15
28	Pre-budburst temperature influences the inner and outer arm morphology, phenology, flower number, fruitset, TSS accumulation and variability of Vitis vinifera L. Sauvignon Blanc bunches. Australian Journal of Grape and Wine Research, 2017, 23, 280-286.	2.1	14
29	The final steps in anthocyanin formation: A story of modification and sequestration. Advances in Botanical Research, 2002, 37, 55-74.	1.1	13
30	Comparisons of controlled environment and vineyard experiments in Sauvignon blanc grapes reveal similar UV-B signal transduction pathways for flavonol biosynthesis. Plant Science, 2018, 276, 44-53.	3.6	13
31	Genetic Parameters and Development of a Selection Index for Breeding Red Raspberries for Processing. Journal of the American Society for Horticultural Science, 2012, 137, 236-242.	1.0	9
32	Altering expression of the flavonoid 3′-hydroxylase gene modified flavonol ratios and pollen germination in transgenic Mitchell petunia plants. Functional Plant Biology, 2006, 33, 1141.	2.1	6
33	Effects of shoot girdling and/or periodic leaf removal on inflorescence primordia initiation and development inVitis viniferaâ€L. cv. Sauvignon Blanc. Australian Journal of Grape and Wine Research, 2015, 21, 118-122.	2.1	6
34	Genetic parameters for fruit mineral content in an interspecific pear (<i>Pyrus</i> spp.) population. New Zealand Journal of Crop and Horticultural Science, 2019, 47, 125-141.	1.3	4
35	Functional Characterization of the Grapevine Î ³ -Glutamyl Transferase/Transpeptidase (E.C. 2.3.2.2) Gene Family Reveals a Single Functional Gene Whose Encoded Protein Product Is Not Located in Either the Vacuole or Apoplast. Frontiers in Plant Science, 2019, 10, 1402.	3.6	4
36	Elevated transcription of transposable elements is accompanied by het-siRNA-driven de novo DNA methylation in grapevine embryogenic callus. BMC Genomics, 2021, 22, 676.	2.8	4

#	Article	IF	CITATIONS
37	GENETIC PARAMETERS ASSOCIATED WITH YIELD AND YIELD COMPONENTS IN RED RASPBERRY. Acta Horticulturae, 2012, , 37-42.	0.2	3
38	Amino acid metabolism and accumulation in â€~Sauvignon Blanc' grapes – investigating berry composition in response to canopy manipulation. Acta Horticulturae, 2017, , 9-14.	0.2	3
39	A Method for Breeding New Cultivars of Machine-harvested Raspberries with High Yield. Journal of the American Society for Horticultural Science, 2012, 137, 458-464.	1.0	2
40	Biotechnology of floral development , 2006, , 237-266.		2
41	Waveband-dependence of UV effects on grape quality in New Zealand. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S202-S203.	1.8	Ο
42	Population Dynamics of Ammonia Oxidizing Bacteria and Archaea and Relationships with Nitrification Rate in New Zealand Grazed Grassland Soils. , 2010, , 72-74.		0
43	Comprehensive analysis of both long and short read transcriptomes of a clonal and a seed-propagated model species reveal the prerequisites for transcriptional activation of autonomous and non-autonomous transposons in plants. Mobile DNA, 2022, 13, 16.	3.6	0