

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5392284/publications.pdf Version: 2024-02-01

ΙΠΛΥΛΝ

#	Article	IF	CITATIONS
1	Light-Induced Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction of the Transcript. Cell, 1997, 91, 1043-1053.	28.9	817
2	Role of DBP in the Circadian Oscillatory Mechanism. Molecular and Cellular Biology, 2000, 20, 4773-4781.	2.3	212
3	Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. European Journal of Neuroscience, 2002, 16, 1531-1540.	2.6	180
4	Gradients in the circadian expression ofPer1andPer2genes in the rat suprachiasmatic nucleus. European Journal of Neuroscience, 2002, 15, 1153-1162.	2.6	135
5	Resetting the brain clock: time course and localization of mPER1 and mPER2 protein expression in suprachiasmatic nuclei during phase shifts. European Journal of Neuroscience, 2004, 19, 1105-1109.	2.6	114
6	Phenotype Matters: Identification of Light-Responsive Cells in the Mouse Suprachiasmatic Nucleus. Journal of Neuroscience, 2004, 24, 68-75.	3.6	112
7	Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat. Neuroscience Letters, 2000, 294, 41-44.	2.1	95
8	Exploring Spatiotemporal Organization of SCN Circuits. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 527-541.	1.1	95
9	Two Antiphase Oscillations Occur in Each Suprachiasmatic Nucleus of Behaviorally Split Hamsters. Journal of Neuroscience, 2005, 25, 9017-9026.	3.6	93
10	Nighttime dim light exposure alters the responses of the circadian system. Neuroscience, 2010, 170, 1172-1178.	2.3	86
11	Differential adrenergic regulation of the circadian expression of the clock genes <i>Period1</i> and <i>Period2</i> in the rat pineal gland. European Journal of Neuroscience, 2000, 12, 4557-4561.	2.6	84
12	Cellular Location and Circadian Rhythm of Expression of the Biological Clock GenePeriod 1in the Mouse Retina. Journal of Neuroscience, 2003, 23, 7670-7676.	3.6	83
13	Depression-Like Responses Induced by Daytime Light Deficiency in the Diurnal Grass Rat (Arvicanthis) Tj ETQq1 🕻	l 0.78431 2.5	4 rgBT /Over
14	Neuroendocrine underpinnings of sex differences in circadian timing systems. Journal of Steroid Biochemistry and Molecular Biology, 2016, 160, 118-126.	2.5	65
15	Attenuated orexinergic signaling underlies depression-like responses induced by daytime light deficiency. Neuroscience, 2014, 272, 252-260.	2.3	57
16	Orexinergic signaling mediates light-induced neuronal activation in the dorsal raphe nucleus. Neuroscience, 2012, 220, 201-207.	2.3	56
17	A short half-life GFP mouse model for analysis of suprachiasmatic nucleus organization. Brain Research, 2003, 964, 279-287.	2.2	54
18	Direction-dependent effects of chronic "jet-lag―on hippocampal neurogenesis. Neuroscience Letters, 2012, 515, 177-180.	2.1	47

Lily Yan

#	Article	IF	CITATIONS
19	Circadian and photic modulation of daily rhythms in diurnal mammals. European Journal of Neuroscience, 2020, 51, 551-566.	2.6	46
20	Calbindin Influences Response to Photic Input in Suprachiasmatic Nucleus. Journal of Neuroscience, 2003, 23, 8820-8826.	3.6	43
21	Changes in the Daily Rhythm of Lipid Metabolism in the Diabetic Retina. PLoS ONE, 2014, 9, e95028.	2.5	38
22	Light modulates hippocampal function and spatial learning in a diurnal rodent species: A study using male nile grass rat (<i>Arvicanthis niloticus</i>). Hippocampus, 2018, 28, 189-200.	1.9	36
23	Distribution and circadian expression ofdbp in SCN and extra-SCN areas in the mouse brain. , 2000, 59, 291-295.		35
24	Reorganization of Suprachiasmatic Nucleus Networks under 24-h LDLD Conditions. Journal of Biological Rhythms, 2010, 25, 19-27.	2.6	35
25	Targeted mutation of the calbindin D _{28K} gene disrupts circadian rhythmicity and entrainment. European Journal of Neuroscience, 2008, 27, 2907-2921.	2.6	34
26	Clock Gene Expression in the Suprachiasmatic Nucleus of Hibernating Arctic Ground Squirrels. Journal of Biological Rhythms, 2017, 32, 246-256.	2.6	33
27	Light as a modulator of emotion and cognition: Lessons learned from studying a diurnal rodent. Hormones and Behavior, 2019, 111, 78-86.	2.1	32
28	Dayâ€length encoding through tonic photic effects in the retinorecipient SCN region. European Journal of Neuroscience, 2008, 28, 2108-2115.	2.6	30
29	Responses of brain and behavior to changing day-length in the diurnal grass rat (Arvicanthis) Tj ETQq1 1 0.784	314 rgBT /(Dverlock 10 T
30	Acute effects of light on the brain and behavior of diurnal Arvicanthis niloticus and nocturnal Mus musculus. Physiology and Behavior, 2015, 138, 75-86.	2.1	29
31	Decreased daytime illumination leads to anxiety-like behaviors and HPA axis dysregulation in the diurnal grass rat (Arvicanthis niloticus). Behavioural Brain Research, 2016, 300, 77-84.	2.2	29
32	Lesions of the Intergeniculate Leaflet Lead to a Reorganization in Circadian Regulation and a Reversal in Masking Responses to Photic Stimuli in the Nile Grass Rat. PLoS ONE, 2013, 8, e67387.	2.5	29
33	Hypothalamic dopaminergic neurons in an animal model of seasonal affective disorder. Neuroscience Letters, 2015, 602, 17-21.	2.1	27
34	DARPP-32 Involvement in the Photic Pathway of the Circadian System. Journal of Neuroscience, 2006, 26, 9434-9438.	3.6	26
35	Expression of clock genes in the suprachiasmatic nucleus: Effect of environmental lighting conditions. Reviews in Endocrine and Metabolic Disorders, 2009, 10, 301-310.	5.7	26
36	Circadian rhythm of aromaticl-amino acid decarboxylase in the rat suprachiasmatic nucleus: gene expression and decarboxylating activity in clock oscillating cells. Genes To Cells, 2002, 7, 447-459.	1.2	24

Lily Yan

#	Article	IF	CITATIONS
37	A comparison of the orexin receptor distribution in the brain between diurnal Nile grass rats () Tj ETQq1 1 0.7843	14.rgBT /(2.2	Overlock 10
38	Structural and functional changes in the suprachiasmatic nucleus following chronic circadian rhythm perturbation. Neuroscience, 2011, 183, 99-107.	2.3	21
39	Distributions of GABAergic and glutamatergic neurons in the brains of a diurnal and nocturnal rodent. Brain Research, 2018, 1700, 152-159.	2.2	19
40	Low Daytime Light Intensity Disrupts Male Copulatory Behavior, and Upregulates Medial Preoptic Area Steroid Hormone and Dopamine Receptor Expression, in a Diurnal Rodent Model of Seasonal Affective Disorder. Frontiers in Behavioral Neuroscience, 2019, 13, 72.	2.0	19
41	Behavioral Masking and cFos Responses to Light in Day- and Night-Active Grass Rats. Journal of Biological Rhythms, 2014, 29, 192-202.	2.6	16
42	Chronic Light Exposure in the Middle of the Night Disturbs the Circadian System and Emotional Regulation. Journal of Biological Rhythms, 2016, 31, 352-364.	2.6	16
43	Suprachiasmatic Nucleus and Subparaventricular Zone Lesions Disrupt Circadian Rhythmicity but Not Light-Induced Masking Behavior in Nile Grass Rats. Journal of Biological Rhythms, 2016, 31, 170-181.	2.6	16
44	Entraining to the polar day: circadian rhythms in arctic ground squirrels. Journal of Experimental Biology, 2017, 220, 3095-3102.	1.7	16
45	Voluntary running depreciates the requirement of Ca ²⁺ -stimulated cAMP signaling in synaptic potentiation and memory formation. Learning and Memory, 2016, 23, 442-449.	1.3	13
46	Normal behavioral responses to light and darkness and the pupillary light reflex are dependent upon the olivary pretectal nucleus in the diurnal Nile grass rat. Neuroscience, 2017, 355, 225-237.	2.3	13
47	Daytime Light Intensity Modulates Spatial Learning and Hippocampal Plasticity in Female Nile Grass Rats (Arvicanthis niloticus). Neuroscience, 2019, 404, 175-183.	2.3	13
48	Orexinergic modulation of serotonin neurons in the dorsal raphe of a diurnal rodent, Arvicanthis niloticus. Hormones and Behavior, 2019, 116, 104584.	2.1	11
49	Cellular localization and function of DARPP-32 in the rodent retina. European Journal of Neuroscience, 2007, 25, 3233-3242.	2.6	9
50	Intergeniculate leaflet lesions result in differential activation of brain regions following the presentation of photic stimuli in Nile grass rats. Neuroscience Letters, 2014, 579, 101-105.	2.1	9
51	Phase shifts and Per gene expression in mouse suprachiasmatic nucleus. NeuroReport, 2003, 14, 1247-1251.	1.2	8
52	Effects of sex and reproductive experience on the number of orexin A-immunoreactive cells in the prairie vole brain. Peptides, 2014, 57, 122-128.	2.4	7
53	The Cost of Activity during the Rest Phase: Animal Models and Theoretical Perspectives. Frontiers in Endocrinology, 2018, 9, 72.	3.5	6
54	Impact of daytime light intensity on the central orexin (hypocretin) system of a diurnal rodent (<i>Arvicanthis niloticus</i>). European Journal of Neuroscience, 2021, 54, 4167-4181.	2.6	5

Lily Yan

#	Article	IF	CITATIONS
55	Orexin (hypocretin) mediates lightâ€dependent fluctuation of hippocampal function in a diurnal rodent. Hippocampus, 2021, 31, 1104-1114.	1.9	3
56	Targeted mutation of the calbindin D28Kgene disrupts circadian rhythmicity and entrainment. European Journal of Neuroscience, 2008, 28, 1030-1030.	2.6	0