Mei-Kun Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5391428/publications.pdf

Version: 2024-02-01

71	3,622	29 h-index	59
papers	citations		g-index
71	71	71	5123
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly sensitive SERS detection of residual nitrofurantoin and 1â€aminoâ€hydantoin in aquatic products and feeds. Luminescence, 2022, 37, 82-88.	2.9	13
2	Quantitative detection of 6-thioguanine in body fluids based on a free-standing liquid membrane SERS substrate. Analytical and Bioanalytical Chemistry, 2022, 414, 1663-1670.	3.7	4
3	Fluorescence immunoassay rapid detection of 2019-nCoV antibody based on the fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticle. Microchemical Journal, 2022, 173, 107046.	4.5	10
4	A SERS pH sensor for highly alkaline conditions and its application for pH sensing in aerosol droplets. Analytical Methods, 2022, 14, 1856-1861.	2.7	3
5	Phenotyping Bacteria through a Black-Box Approach: Amplifying Surface-Enhanced Raman Spectroscopy Spectral Differences among Bacteria by Inputting Appropriate Environmental Stress. Analytical Chemistry, 2022, 94, 6791-6798.	6.5	14
6	Boosting bacteria differentiation efficiency with multidimensional surfaceâ€enhanced Raman scattering: the example of ⟨i⟩Bacillus cereus⟨/i⟩. Luminescence, 2022, 37, 1145-1151.	2.9	8
7	Assessing the effect of different pH maintenance situations on bacterial SERS spectra. Analytical and Bioanalytical Chemistry, 2022, 414, 4977-4985.	3.7	4
8	Multidimensional Surface-Enhanced Raman Scattering (SERS) Strategy for Tea Differentiation. ACS Food Science & Technology, 2022, 2, 1096-1102.	2.7	7
9	Study on the Photolysis Route of Nano 2,2ʹ,4,4ʹ,6,6ʹ–Hexanitrostillbene by Vibrational Spectroscopy. Journal of Analysis and Testing, 2021, 5, 197-202.	5.1	1
10	Self-supporting liquid film as reproducible SERS platform for therapeutic drug monitoring of berberine hydrochloride in human urine. Microchemical Journal, 2021, 165, 106122.	4.5	14
11	Free-Standing Membrane Liquid-State Platform for SERS-Based Determination of Norfloxacin in Environmental Samples. Journal of Analysis and Testing, 2021, 5, 217-224.	5.1	9
12	Special Topic: Resonance Spectroscopy and Spectrometry. Journal of Analysis and Testing, 2021, 5, 195-196.	5.1	1
13	Highly sensitive bromide aided SERS detection of furazolidone and 3-amino-2-oxazolidinone residual in aquaculture products. Microchemical Journal, 2021, 169, 106532.	4.5	16
14	Fluorescent and visual detection of norfloxacin in aqueous solutions with a molecularly imprinted polymer coated paper sensor. Talanta, 2020, 208, 120435.	5.5	26
15	Evaluation of the intrinsic pH sensing performance of surface-enhanced Raman scattering pH probes. Microchemical Journal, 2020, 154, 104565.	4.5	10
16	A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Analytica Chimica Acta, 2020, 1097, 1-29.	5.4	339
17	Molecularly imprinted polymers hydrogel for the rapid risk-category-specific screening of food using SPE followed by fluorescence spectrometric detection. Microchemical Journal, 2020, 159, 105408.	4.5	4
18	From children's toy to versatile sensor: One-step doping of Play-Doh with primary amino group for explosive detection both on surfaces and in solution. Analytica Chimica Acta, 2020, 1128, 193-202.	5.4	4

#	Article	IF	Citations
19	Facile preparation of chitosan coated silver nanoparticles embedded cotton fabric for point-of-use water disinfection. Materials Letters, 2020, 277, 128256.	2.6	14
20	Multifunctional Flexible SERS Sensor on a Fixate Gel Pad: Capturing, Derivation, and Selective Picogram Indirect Detection of Explosive 2,2′,4,4′,6,6′-Hexanitrostilbene. ACS Sensors, 2020, 5, 3599-36	506: ⁸	21
21	Self-Healing 3D Liquid Freestanding Plasmonic Nanoparticle Membrane for Reproducible Surface-Enhanced Raman Spectroscopy Sensing. ACS Applied Nano Materials, 2020, 3, 10014-10021.	5.0	16
22	A dual functional cotton swab sensor for rapid on-site naked-eye sensing of nitro explosives on surfaces. Microchemical Journal, 2020, 159, 105398.	4. 5	8
23	Unsupported liquid-state platform for SERS-based determination of triazophos. Mikrochimica Acta, 2020, 187, 502.	5.0	14
24	Detection of Buried Explosives Using a Surface-Enhanced Raman Scattering (SERS) Substrate Tailored for Miniaturized Spectrometers. ACS Sensors, 2020, 5, 2933-2939.	7.8	36
25	Surfaceâ€enhanced Raman spectroscopy for onâ€site analysis: A review of recent developments. Luminescence, 2020, 35, 808-820.	2.9	61
26	Copper foam <i>in situ</i> loaded with precious metal nanoparticles as transmission SEIRAS substrate for rapid detection of dithiocarbamate pesticides. Analytical Methods, 2020, 12, 3600-3607.	2.7	6
27	Observation and analysis of VOCs in nine prefecture-level cities of Sichuan Province, China. Environmental Monitoring and Assessment, 2020, 192, 511.	2.7	4
28	Rapid screening of rhodamine B in food by hydrogel solid-phase extraction coupled with direct fluorescence detection. Food Chemistry, 2020, 316, 126378.	8.2	28
29	Screening for malachite green contamination on live fish skin with chewing gum based viscoelastic SERS sensor. Journal of Food and Drug Analysis, 2020, 28, 231-238.	1.9	10
30	Silver nanoparticles on copper foam as substrate for full range mid-infrared surface enhanced infrared absorption spectroscopy in transmission configuration. Microchemical Journal, 2019, 151, 104252.	4. 5	3
31	Facile fabrication of a large-area and cost-effective PDMS-SERS substrate by sandpaper template-assisted lithography. Analytical Methods, 2019, 11, 4917-4922.	2.7	32
32	Fluorescence analysis of cobalt(ii) in water with \hat{l}^2 -cyclodextrin modified Mn-doped ZnS quantum dots. Analytical Methods, 2019, 11, 3829-3836.	2.7	5
33	Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling. Food Chemistry, 2019, 295, 254-258.	8.2	72
34	Silver-nanoparticles-loaded chitosan foam as a flexible SERS substrate for active collecting analytes from both solid surface and solution. Talanta, 2019, 191, 241-247.	5 . 5	38
35	Facile preparation of silver nanoparticle decorated chitosan cryogels for point-of-use water disinfection. Science of the Total Environment, 2018, 613-614, 1317-1323.	8.0	36
36	Killing Two Birds with One Stone: Coating Ag NPs Embedded Filter Paper with Chitosan for Better and Durable Point-of-Use Water Disinfection. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38239-38245.	8.0	21

#	Article	IF	CITATIONS
37	Decision table in Rough Set as a new chemometric approach for synthesis optimization: Mn-doped ZnS quantum dots as the example. Chemometrics and Intelligent Laboratory Systems, 2018, 182, 124-130.	3.5	4
38	Quantification of combined color and shade changes in colorimetry and image analysis: water pH measurement as an example. Analytical Methods, 2018, 10, 3059-3065.	2.7	14
39	Dual functional PDMS sponge SERS substrate for the on-site detection of pesticides both on fruit surfaces and in juice. Analyst, The, 2018, 143, 2689-2695.	3.5	49
40	Ammonia Synthesis from Electrocatalytic N ₂ Reduction under Ambient Conditions by Fe ₂ O ₃ Nanorods. ChemCatChem, 2018, 10, 4530-4535.	3.7	95
41	Modulation of potential barrier heights in Co3O4/SnO2 heterojunctions for highly H2-selective sensors. Sensors and Actuators B: Chemical, 2017, 244, 694-700.	7.8	55
42	3D printing of a mechanically durable superhydrophobic porous membrane for oil–water separation. Journal of Materials Chemistry A, 2017, 5, 12435-12444.	10.3	189
43	Surface Enhanced Raman Scattering (SERS) Nanoprobes as Cancer Theranostics. , 2016, , 177-204.		0
44	Rapid and direct detection of illicit dyes on tainted fruit peel using a PVA hydrogel surface enhanced Raman scattering substrate. Analytical Methods, 2016, 8, 4816-4820.	2.7	22
45	SERS optrode as a "fishing rod―to direct pre-concentrate analytes from superhydrophobic surfaces. Chemical Communications, 2015, 51, 1965-1968.	4.1	31
46	Fabrication of SERS Swab for Direct Detection of Trace Explosives in Fingerprints. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21931-21937.	8.0	119
47	Surface enhanced Raman scattering fiber optic sensor as an ion selective optrode: the example of Cd ²⁺ detection. RSC Advances, 2014, 4, 64683-64687.	3.6	17
48	A silver nanoparticle embedded hydrogel as a substrate for surface contamination analysis by surface-enhanced Raman scattering. Analyst, The, 2014, 139, 5283-5289.	3.5	38
49	Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide). Journal of Materials Chemistry A, 2014, 2, 11980-11986.	10.3	68
50	Single point calibration for semi-quantitative screening based on an internal reference in thin layer chromatography-SERS: the case of Rhodamine B in chili oil. Analytical Methods, 2014, 6, 7218-7223.	2.7	30
51	Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale, 2014, 6, 7877-7888.	5.6	66
52	Ag decorated sandpaper as flexible SERS substrate for direct swabbing sampling. Materials Letters, 2014, 133, 57-59.	2.6	48
53	Statistical Correlation Between SERS Intensity and Nanoparticle Cluster Size. Journal of Physical Chemistry C, 2013, 117, 16596-16605.	3.1	41
54	Separation, identification and fast determination of organophosphate pesticide methidathion in tea leaves by thin layer chromatography–surface-enhanced Raman scattering. Analytical Methods, 2013, 5, 5560.	2.7	41

#	Article	IF	Citations
55	Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure. Green Chemistry, 2013, 15, 821.	9.0	61
56	Surface-enhanced Raman scattering (SERS) from Au:Ag bimetallic nanoparticles: the effect of the molecular probe. Chemical Science, 2013, 4, 509-515.	7.4	183
57	Development of multicolor carbon nanoparticles for cell imaging. Talanta, 2013, 108, 59-65.	5.5	54
58	Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720. Lab on A Chip, 2012, 12, 1554.	6.0	49
59	Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 310-316.	3.1	5
60	A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta, 2011, 693, 7-25.	5.4	905
61	Silver Nanoparticles on a Plastic Platform for Localized Surface Plasmon Resonance Biosensing. Analytical Chemistry, 2010, 82, 6350-6352.	6.5	107
62	Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosensors and Bioelectronics, 2010, 25, 2270-2275.	10.1	123
63	Multilayer Silver Nanoparticles Modified Optical Fiber Tip for High Performance SERS Remote Sensing. ECS Meeting Abstracts, 2010, , .	0.0	0
64	Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Physical Chemistry Chemical Physics, 2009, 11, 7381.	2.8	224
65	Selfâ€Assembled Au Nanoparticles as Substrates for Surfaceâ€Enhanced Vibrational Spectroscopy: Optimization and Electrochemical Stability. ChemPhysChem, 2008, 9, 1899-1907.	2.1	43
66	DETERMINATION OF TRACE AMOUNT OF ALUMINUM IN WATER SAMPLES BY A FLUORESCENT MICROSCOPIC SELF-ORDERED RING TECHNIQUE. Analytical Letters, 2002, 35, 2565-2576.	1.8	3
67	Fluorescent microscopic determination of cadmium in water samples with the self-ordered ring of $\hat{l}\pm,\hat{l}^2,\hat{l}^3,\hat{l}$ -tetra(5-sulfophenyl)porphine formed on the solid support of glass slides. Analytica Chimica Acta, 2002, 453, 97-104.	5.4	9
68	Fluorescence microscopic quantification of DNA with $\hat{l}\pm,\hat{l}^2,\hat{l}^3,\hat{l}$ -tetrakis[4-(trimethylammonium)phenyl]porphine by a ring-like deposition technique. Analytica Chimica Acta, 2002, 466, 193-200.	5.4	5
69	Microarray of DNA probes on carboxylate functional beads surface. Science in China Series B: Chemistry, 2000, 43, 435-442.	0.8	2
70	Potential of removing Pb, Cd, and Cu from aqueous solutions using a novel modified ginkgo leaves biochar by simply one-step pyrolysis. Biomass Conversion and Biorefinery, 0, , 1.	4.6	8
71	Halogen ions modified Ag NPs for ultrasensitive SERS detection of Polycyclic aromatic hydrocarbons. Luminescence, 0, , .	2.9	2