Melaku A Gedil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5390993/publications.pdf

Version: 2024-02-01

304743 265206 2,197 77 22 42 h-index citations g-index papers 81 81 81 2392 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genotype by environment interaction and grain yield stability of drought tolerant cowpea landraces in Ethiopia. Euphytica, 2022, 218, 1.	1.2	5
2	Optimizing use of U.S. Ex-PVP inbred lines for enhancing agronomic performance of tropical Striga resistant maize inbred lines. BMC Plant Biology, 2022, 22, .	3.6	3
3	Short communication: Finetuning molecular markers for efficient selection of vitamin A-rich tropical maize lines in a molecular breeding scheme. Journal of Cereal Science, 2021, 97, 103149.	3.7	1
4	Heterotic grouping of tropical maize inbred lines and their hybrid performance under stem borer infestation and low soil nitrogen condition in West and Central Africa. Euphytica, 2021, 217, 1.	1.2	7
5	Validation of Diagnostic Markers for Streak Virus Disease Resistance in Maize. Agriculture (Switzerland), 2021, 11, 130.	3.1	6
6	Assessment of diversity in tropical soybean (<i>Glycine max</i> (L.) Merr.) varieties and elite breeding lines using single nucleotide polymorphism markers. Plant Genetic Resources: Characterisation and Utilisation, 2021, 19, 20-28.	0.8	5
7	Genetic diversity and population structure of early and extra-early maturing maize germplasm adapted to sub-Saharan Africa. BMC Plant Biology, 2021, 21, 96.	3.6	20
8	Breeding maize (<i>Zea mays</i>) for Striga resistance: Past, current and prospects in subâ€saharan africa. Plant Breeding, 2021, 140, 195-210.	1.9	23
9	Genetic Diversity and Population Structure of Soybean Lines Adapted to Sub-Saharan Africa Using Single Nucleotide Polymorphism (SNP) Markers. Agronomy, 2021, 11, 604.	3.0	17
10	Development of Extra-Early Provitamin A Quality Protein Maize Inbreds with Resistance/Tolerance to Striga hermonthica and Soil Nitrogen Stress. Agronomy, 2021, 11, 891.	3.0	3
11	Identifying suitable tester for evaluating Striga resistant lines using DArTseq markers and agronomic traits. PLoS ONE, 2021, 16, e0253481.	2.5	5
12	Marker based enrichment of provitamin A content in two tropical maize synthetics. Scientific Reports, 2021, 11, 14998.	3.3	7
13	Assessing performance of white endosperm testers with varying resistance reactions to Striga () Tj ETQq $1\ 1\ 0.786$.	4314 rgBT 1.9	/Overlock 10
14	Combining Ability and Heterosis for Endosperm Carotenoids and Agronomic Traits in Tropical Maize Lines. Frontiers in Plant Science, 2021, 12, 674089.	3.6	4
15	Comparative Assessment of Effectiveness of Alternative Genotyping Assays for Characterizing Carotenoids Accumulation in Tropical Maize Inbred Lines. Agronomy, 2021, 11, 2022.	3.0	5
16	Association analysis for resistance to Striga hermonthica in diverse tropical maize inbred lines. Scientific Reports, 2021, 11, 24193.	3.3	15
17	Assessment of heterotic patterns of tropical lowâ€nitrogen–tolerant maize (Zea mays L.) inbred lines using testcross performance, morphological traits and SNP markers. Plant Breeding, 2020, 139, 1113-1124.	1.9	4
18	Genomic Analysis of Selected Maize Landraces from Sahel and Coastal West Africa Reveals Their Variability and Potential for Genetic Enhancement. Genes, 2020, 11, 1054.	2.4	5

#	Article	IF	Citations
19	Identification of QTLs Controlling Resistance/Tolerance to Striga hermonthica in an Extra-Early Maturing Yellow Maize Population. Agronomy, 2020, 10, 1168.	3.0	22
20	Genetic Diversity and Inter-Trait Relationships among Maize Inbreds Containing Genes from Zea diploperennis and Hybrid Performance under Contrasting Environments . Agronomy, 2020, 10, 1478.	3.0	3
21	Genetic Diversity and Population Structure of Maize Inbred Lines with Varying Levels of Resistance to Striga Hermonthica Using Agronomic Trait-Based and SNP Markers. Plants, 2020, 9, 1223.	3.5	8
22	Effectiveness of Yellow Maize Testers with Varying Resistance Reactions to Striga hermonthica for Evaluating the Combining Ability of Maize Inbred Lines. Agronomy, 2020, 10, 1276.	3.0	11
23	Identification of QTLs for grain yield and other traits in tropical maize under Striga infestation. PLoS ONE, 2020, 15, e0239205.	2.5	14
24	Contrasting Response Mechanisms of Maize Lines to Striga hermonthica. Agriculture (Switzerland), 2020, 10, 485.	3.1	1
25	Assessing Effect of Marker-Based Improvement of Maize Synthetics on Agronomic Performance, Carotenoid Content, Combining Ability and Heterosis. Agronomy, 2020, 10, 1625.	3.0	6
26	Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines. BMC Plant Biology, 2020, 20, 203.	3.6	29
27	Genetic dissection of yield associated traits in a cross between cowpea and yard-long bean (Vigna) Tj ETQq1 1 0	.784314 rş	gBT/Overloc
28	Quantitative trait loci mapping for resistance to maize streak virus in F2:3 population of tropical maize. Cereal Research Communications, 2020, 48, 195-202.	1.6	3
29	Identification of candidate flowering and sex genes in white Guinea yam (D. rotundata Poir.) by SuperSAGE transcriptome profiling. PLoS ONE, 2019, 14, e0216912.	2.5	16
30	Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS ONE, 2019, 14, e0214810.	2.5	45
31	Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance. BMC Plant Biology, 2019, 19, 129.	3.6	19
32	Assessment of genetic diversity among low-nitrogen-tolerant early generation maize inbred lines using SNP markers. South African Journal of Plant and Soil, 2019, 36, 181-188.	1.1	8
33	Public sector soybean (<i>Glycine max</i>) breeding: Advances in cultivar development in the African tropics. Plant Breeding, 2019, 138, 455-464.	1.9	11
34	An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa. Frontiers in Plant Science, 2019, 10, 1430.	3.6	40
35	Genetic Loci Controlling Carotenoid Biosynthesis in Diverse Tropical Maize Lines. G3: Genes, Genomes, Genetics, 2018, 8, 1049-1065.	1.8	26
36	Effectiveness of predictive markers for marker assisted selection of pro-vitamin A carotenoids in medium-late maturing maize (Zea mays L.) inbred lines. Journal of Cereal Science, 2018, 79, 27-34.	3.7	26

#	Article	IF	CITATIONS
37	Optimizing sample size for molecular characterization of open-pollinated maize (Zea mays L.) varieties using simple sequence repeat markers. Cereal Research Communications, 2018, 46, 569-579.	1.6	1
38	Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna) Tj ETQq0 0 0 rgBT	Oyerloo	:k 10 Tf 50 70
39	Mapping of QTLs associated with recovery resistance to streak virus disease in maize. Annals of Agricultural Sciences, 2018, 63, 115-121.	2.9	7
40	Genetic Basis and Breeding Perspectives of Grain Iron and Zinc Enrichment in Cereals. Frontiers in Plant Science, 2018, 9, 937.	3.6	117
41	Identification of Quantitative Trait Loci for Grain Yield and Other Traits in Tropical Maize Under High and Low Soilâ€Nitrogen Environments. Crop Science, 2018, 58, 321-331.	1.8	25
42	Correlation and Path Coefficient Analyses of Cowpea (<i>Vigna) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 2794-2812.</i>	50 547 ° 0.8	Γd (unguicula 5
43	Morphological, SSR and ploidy analysis of water yam (Dioscorea alata L.) accessions for utilization of aerial tubers as planting materials. Genetic Resources and Crop Evolution, 2017, 64, 291-305.	1.6	16
44	Genetic divergence in two tropical maize composites after four cycles of reciprocal recurrent selection. Plant Breeding, 2017, 136, 41-49.	1.9	12
45	Genetic diversity of tropical maize inbred lines combining resistance to <i>Striga hermonthica</i> with drought tolerance using <scp>SNP</scp> markers. Plant Breeding, 2017, 136, 338-343.	1.9	24
46	Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava (Manihot esculenta Crantz). Molecular Breeding, 2017, 37, 1.	2.1	15
47	Genetic diversity and population structure of <i>Striga hermonthica</i> populations from Kenya and Nigeria. Weed Research, 2017, 57, 293-302.	1.7	23
48	Genetic Gains in Yield and Yield Related Traits under Drought Stress and Favorable Environments in a Maize Population Improved Using Marker Assisted Recurrent Selection. Frontiers in Plant Science, 2017, 8, 808.	3.6	45
49	Genetic Gains in Grain Yield of a Maize Population Improved through Marker Assisted Recurrent Selection under Stress and Non-stress Conditions in West Africa. Frontiers in Plant Science, 2017, 8, 841.	3.6	32
50	Genomeâ€Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content. Plant Genome, 2017, 10, plantgenome2016.09.0094.	2.8	63
51	Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biology, 2017, 15, 86.	3.8	114
52	Heterotic Patterns of IITA and CIMMYT Earlyâ€Maturing Yellow Maize Inbreds under Contrasting Environments. Agronomy Journal, 2016, 108, 1321-1336.	1.8	27
53	DNA barcoding of the main cultivated yams and selected wild species in the genus <i>Dioscorea</i> Journal of Systematics and Evolution, 2016, 54, 228-237.	3.1	15

Tracking crop varieties using genotyping-by-sequencing markers: a case study using cassava (Manihot) Tj ETQq0 0 0 rgBT /Overlock 10 7

#	Article	IF	CITATIONS
55	Heterotic responses among crosses of IITA and CIMMYT early white maize inbred lines under multiple stress environments. Euphytica, 2015, 206, 245-262.	1.2	24
56	Diversity assessment of drought tolerant exotic and adapted maize (Zea mays L.) inbred lines with microsatellite markers. Journal of Crop Science and Biotechnology, 2015, 18, 147-154.	1.5	11
57	Biotechnology Success Stories by the Consultative Group on International Agriculture Research (CGIAR) System. Science Policy Reports, 2014, , 95-114.	0.1	4
58	High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 2014, 186, 87-96.	2.2	143
59	Next-generation sequencing based genotyping, cytometry and phenotyping for understanding diversity and evolution of guinea yams. Theoretical and Applied Genetics, 2014, 127, 1783-1794.	3.6	59
60	Carotenoid accumulation and agronomic performance of maize hybrids involving parental combinations from different marker-based groups. Food Chemistry, 2014, 148, 131-137.	8.2	34
61	Genetic Mapping Using Genotypingâ€byâ€Sequencing in the Clonally Propagated Cassava. Crop Science, 2014, 54, 1384-1396.	1.8	50
62	Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biology, 2013, 13, 227.	3.6	93
63	Molecular Markers and Their Application to Cassava Breeding: Past, Present and Future. Tropical Plant Biology, 2012, 5, 95-109.	1.9	34
	0.0.06),, 0, 10 -0.1		
64	Dioscorea., 2011,, 71-96.		15
64		17.5	15
	Dioscorea., 2011,, 71-96. Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 2010, 28,	17.5 1.8	
65	Dioscorea., 2011,, 71-96. Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 2010, 28, 951-956. Relationship of Genetic Diversity of Inbred Lines with Different Reactions to <i>Striga</i>		449
65	Dioscorea., 2011,, 71-96. Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 2010, 28, 951-956. Relationship of Genetic Diversity of Inbred Lines with Different Reactions to <i>Striga hermonthica </i> (Del.) Benth and the Performance of Their Crosses. Crop Science, 2010, 50, 602-611. Genetic differentiation analysis of African cassava (<i>Manihot esculenta </i>) landraces and elite germplasm using amplified fragment length polymorphism and simple sequence repeat markers. Annals	1.8	449 36
65 66 67	Dioscorea., 2011,, 71-96. Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 2010, 28, 951-956. Relationship of Genetic Diversity of Inbred Lines with Different Reactions to <i>Striga hermonthica</i> (Del.) Benth and the Performance of Their Crosses. Crop Science, 2010, 50, 602-611. Genetic differentiation analysis of African cassava (<i>Manihot esculenta</i>) landraces and elite germplasm using amplified fragment length polymorphism and simple sequence repeat markers. Annals of Applied Biology, 2009, 155, 187-199.	1.8 2.5	449 36 21
65 66 67 68	Dioscorea., 2011,, 71-96. Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 2010, 28, 951-956. Relationship of Genetic Diversity of Inbred Lines with Different Reactions to <i>Striga hermonthica (i) (Del.) Benth and the Performance of Their Crosses. Crop Science, 2010, 50, 602-611. Genetic differentiation analysis of African cassava (<i>Manihot esculenta (i)) landraces and elite germplasm using amplified fragment length polymorphism and simple sequence repeat markers. Annals of Applied Biology, 2009, 155, 187-199. KIR3DL2: diversity in a hematopoietic stem cell transplant population. Tissue Antigens, 2007, 70, 228-232. Genomic characterization of KIR2DL4 in families and unrelated individuals reveals extensive diversity in exon and intron sequences including a common frameshift variation occurring in several alleles.</i></i>	1.8 2.5 1.0	449362112
65 66 67 68	Dioscorea., 2011,, 71-96. Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 2010, 28, 951-956. Relationship of Genetic Diversity of Inbred Lines with Different Reactions to <i>Striga hermonthica</i> (Del.) Benth and the Performance of Their Crosses. Crop Science, 2010, 50, 602-611. Genetic differentiation analysis of African cassava (<i>Manihot esculenta</i>) landraces and elite germplasm using amplified fragment length polymorphism and simple sequence repeat markers. Annals of Applied Biology, 2009, 155, 187-199. KIR3DL2: diversity in a hematopoietic stem cell transplant population. Tissue Antigens, 2007, 70, 228-232. Genomic characterization of KIR2DL4 in families and unrelated individuals reveals extensive diversity in exon and intron sequences including a common frameshift variation occurring in several alleles. Tissue Antigens, 2005, 65, 402-418. Candidate disease resistance genes in sunflower cloned using conserved nucleotide-binding site motifs: Genetic mapping and linkage to the downy mildew resistance gene <i>Pl1</i>	1.8 2.5 1.0	 449 36 21 12 22

#	Article	lF	CITATIONS
73	Effects of drought stress on grain yield, agronomic performance, and heterosis of marker-based improved provitamin-A maize synthetics and their hybrids. Journal of Crop Improvement, 0, , 1-21.	1.7	1
74	Efficacy of maize inbred testers with varying levels of resistance to Striga for classifying Striga-resistant yellow-maize lines into heterotic groups. Journal of Crop Improvement, 0, , 1-21.	1.7	2
75	Mutagen Identification and Molecular Analysis of Pro-vitamin A Carotenoid Genes in Cassava (<i>Manihot esculenta</i> Crantz). Molecular Plant Breeding, 0, , .	0.0	1
76	Developing and deploying an efficient genotyping workflow for accelerating maize improvement in developing countries. Gates Open Research, 0, 6, 3.	1.1	0
77	Developing and deploying an efficient genotyping workflow for accelerating maize improvement in developing countries. Gates Open Research, 0, 6, 3.	1.1	0