
Giandiego Campetella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/539096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
3	Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 2015, 349, 302-305.	12.6	315
4	Effects of extreme drought on specific leaf area of grassland species: A metaâ€analysis of experimental studies in temperate and subâ€Mediterranean systems. Global Change Biology, 2017, 23, 2473-2481.	9.5	165
5	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	7.1	159
6	Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 2022, 6, 36-50.	7.8	89
7	Species richness effects on grassland recovery from drought depend on community productivity in a multisite experiment. Ecology Letters, 2017, 20, 1405-1413.	6.4	82
8	Patterns of plant trait–environment relationships along a forest succession chronosequence. Agriculture, Ecosystems and Environment, 2011, 145, 38-48.	5.3	79
9	Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats. Biodiversity and Conservation, 2013, 22, 2353-2374.	2.6	57
10	The Neglected Belowground Dimension of Plant Dominance. Trends in Ecology and Evolution, 2020, 35, 763-766.	8.7	55
11	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
12	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
13	Changes of vascular plant diversity along a chronosequence of beech coppice stands, central Apennines, Italy. Plant Biosystems, 2008, 142, 572-583.	1.6	48
14	Plant–environment interactions through a functional traits perspective: a review of Italian studies. Plant Biosystems, 2019, 153, 853-869.	1.6	48
15	The response of subâ€Mediterranean grasslands to rainfall variation is influenced by early season precipitation. Applied Vegetation Science, 2016, 19, 611-619.	1.9	40
16	Context-dependent assembly rules and the role of dominating grasses in semi-natural abandoned sub-Mediterranean grasslands. Agriculture, Ecosystems and Environment, 2014, 182, 113-122.	5.3	38
17	How plot shape and spatial arrangement affect plant species richness counts: implications for sampling design and rarefaction analyses. Journal of Vegetation Science, 2016, 27, 692-703.	2.2	38
18	Evaluation of factors affecting gully headcut location using summary statistics and the maximum entropy model: Golestan Province, NE Iran. Science of the Total Environment, 2019, 677, 281-298.	8.0	36

#	Article	IF	CITATIONS
19	Climate change response of vegetation across climatic zones in Italy. Climate Research, 2017, 71, 249-262.	1.1	34
20	Patterns of functional clonal traits and clonal growth modes in contrasting grasslands in the central Apennines, Italy. Journal of Vegetation Science, 2005, 16, 29-36.	2.2	25
21	Patterns of Clonal Growth Modes Along a Chronosequence of Post-Coppice Forest Regeneration in Beech Forests of Central Italy. Folia Geobotanica, 2011, 46, 271-288.	0.9	25
22	Scaleâ€dependent effects of coppicing on the species pool of late successional beech forests in the central Apennines, Italy. Applied Vegetation Science, 2016, 19, 474-485.	1.9	25
23	Relationships between understory specialist species and local management practices in coppiced forests – Evidence from the Italian Apennines. Forest Ecology and Management, 2017, 385, 35-45.	3.2	25
24	Incorporating clonality into the plant ecology research agenda. Trends in Plant Science, 2021, 26, 1236-1247.	8.8	25
25	Will interannual variability in sand grassland communities increase with climate change?. Community Ecology, 2008, 9, 13-21.	0.9	24
26	ICP-Forests (International Co-operative Programme on Assessment and Monitoring of Air Pollution) Tj ETQq0 0 0 Environmental Monitoring, 2009, 11, 782.	rgBT /Ove 2.1	erlock 10 Tf 5 23
27	Adaptation of the Canadian Fire Weather Index to Mediterranean forests. Natural Hazards, 2015, 75, 1795-1810.	3.4	22
28	Spatial point pattern analysis of piping erosion in loess-derived soils in Golestan Province, Iran. Geoderma, 2018, 328, 20-29.	5.1	22
29	Can management intensity be more important than environmental factors? A case study along an extreme elevation gradient from central Italian cereal fields. Plant Biosystems, 2013, 147, 343-353.	1.6	20
30	Coenostate descriptors and spatial dependence in vegetation - derived variables in monitoring forest dynamics and assembly rules. Community Ecology, 2004, 5, 105-114.	0.9	18
31	Effects of climate, soil, forest structure and land use on the functional composition of the understorey in Italian forests. Journal of Vegetation Science, 2019, 30, 1110-1121.	2.2	18
32	Climate is the main driver of clonal and bud bank traits in Italian forest understories. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40, 125478.	2.7	17
33	Plant functional traits are correlated with species persistence in the herb layer of old-growth beech forests. Scientific Reports, 2020, 10, 19253.	3.3	17
34	Unravelling mechanisms of short-term vegetation dynamics in complex coppice forest systems. Folia Geobotanica, 2017, 52, 71-81.	0.9	16
35	Not a melting pot: Plant species aggregate in their nonâ€native range. Global Ecology and Biogeography, 2020, 29, 482-490.	5.8	16
36	Unimodal Relationships of Understory Alpha and Beta Diversity along Chronosequence in Coppiced and Unmanaged Beech Forests. Diversity, 2020, 12, 101.	1.7	12

GIANDIEGO CAMPETELLA

#	Article	IF	CITATIONS
37	Exploring patterns of betaâ€diversity to test the consistency of biogeographical boundaries: A case study across forest plant communities of Italy. Ecology and Evolution, 2019, 9, 11716-11723.	1.9	11
38	Contrasting patterns in leaf traits of Mediterranean shrub communities along an elevation gradient: measurements matter. Plant Ecology, 2019, 220, 765-776.	1.6	11
39	Fineâ€scale spatial pattern analysis of the herb layer of woodland vegetation using information theory. Plant Biosystems, 1999, 133, 277-288.	1.6	10
40	Intraspecific variability of specific leaf area fosters the persistence of understorey specialists across a light availability gradient. Plant Biology, 2021, 23, 212-216.	3.8	10
41	Large standard trees and deadwood promote functional divergence in the understory of beech coppice forests. Forest Ecology and Management, 2021, 494, 119324.	3.2	9
42	Intra- and inter-specific leaf trait responses of understorey species to changes in forest maturity. Forest Ecology and Management, 2022, 506, 119977.	3.2	9
43	Plant diversity changes in a nature reserve: a probabilistic sampling method for quantitative assessments. Nature Conservation, 0, 34, 145-161.	0.0	8
44	Biogeographic deconstruction of phylogenetic and functional diversity provides insights into the formation of regional assemblages. Ecography, 2022, 2022, .	4.5	6
45	Spatial patterns of plant species, guilds and biological types in the regenerative phase of a beech coppice (Torricchio Mountain Nature Reserve, Apennines, Italy). Acta Botanica Gallica, 2005, 152, 529-543.	0.9	5
46	Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	5
47	comspat: an R package to analyze withinâ€community spatial organization using species combinations. Ecography, 2022, 2022, .	4.5	4
48	Management of forest vegetation data series: the role of database in the frame of Quality Assurance procedure. Journal of Limnology, 2002, 61, 100.	1.1	2
49	Clonal Growth Modes in Plant Communities Along a Stress Gradient in the Central Apennines, Italy. , 2006, , 289-308.		2
50	High-Resolution Transect Sampling and Multiple Scale Diversity Analyses for Evaluating Grassland Resilience to Climatic Extremes. Land, 2022, 11, 378.	2.9	2
51	ll Dinamismo Della Vegetazione del Sottobosco in Aree Permanenti di Studio. Giornale Botanico Italiano (Florence, Italy: 1962), 1996, 130, 501-501.	0.0	1
52	European Grasslands Gradient and the Resilience to Extreme Climate Events: The SIGNAL Project in Italy. Geobotany Studies, 2018, , 175-186.	0.2	1
53	An updated checklist of the vascular flora of Montagna di Torricchio State Nature Reserve (Marche,) Tj ETQq1 🕻	1 0.784314 0.0	rgBT /Overloo
54	Aspetti Strutturali di Un Ceduo Invecchiato di Faggio Nella Riserva Naturale di Torricchio. Giornale Rotanico Italiano (Eloranco, Italy: 1962), 1994, 128, 345, 345	0.0	0

Botanico Italiano (Florence, Italy: 1962), 1994, 128, 345-345.

#	Article	IF	CITATIONS
55	L'Influenza del Popolamento Arboreo Sullo Strato Erbaceo Nella Foresta del Gariglione (Parco) Tj ETQq1 1 0.7843 346-346.	14 rgBT 0.0	/Overlock 10 T O
56	Distinctive and Pleasant – Transformative Concepts in Landscape Ecology: Social Ecological Green Spaces (SEGS). Urban Book Series, 2018, , 103-107.	0.6	0
57	Community weighted mean trait data of Italian forest understories. Data in Brief, 2020, 28, 104947.	1.0	0
58	Species trait syndrome drives the leaves' functional variations of dominant grasses to modifications in summer water supply. Plant Ecology, 2021, 222, 1113-1128.	1.6	0