Thomas K Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5390952/publications.pdf Version: 2024-02-01

		4960	12272
307	23,326	84	133
papers	citations	h-index	g-index
225	225	205	10000
325	325	325	18292
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Emerging applications of bacteria as antitumor agents. Seminars in Cancer Biology, 2022, 86, 1014-1025.	9.6	37
2	The role of PemIK (PemK/PemI) type II TA system from Klebsiella pneumoniae clinical strains in lytic phage infection. Scientific Reports, 2022, 12, 4488.	3.3	17
3	Manipulating indole symbiont signalling. Environmental Microbiology Reports, 2022, 14, 691-696.	2.4	2
4	Are we really studying persister cells?. Environmental Microbiology Reports, 2021, 13, 3-7.	2.4	23
5	Type VII Toxin/Antitoxin Classification System for Antitoxins that Enzymatically Neutralize Toxins. Trends in Microbiology, 2021, 29, 388-393.	7.7	58
6	Concerns with computational protein engineering programmes IPRO and OptMAVEn and metabolic pathway engineering programme optStoic. Open Biology, 2021, 11, 200173.	3.6	1
7	Persister Cells Form in the Plant Pathogen Xanthomonas citri subsp. citri under Different Stress Conditions. Microorganisms, 2021, 9, 384.	3.6	8
8	The Primary Physiological Roles of Autoinducer 2 in Escherichia coli Are Chemotaxis and Biofilm Formation. Microorganisms, 2021, 9, 386.	3.6	22
9	â€~Viable but <scp>nonâ€eulturable</scp> cells' are dead. Environmental Microbiology, 2021, 23, 2335-2338	. 3.8	32
10	The secret lives of single cells. Microbial Biotechnology, 2021, , .	4.2	4
11	Mostly dead and all dead: response to â€~what do we mean by viability in terms of "viable but nonâ€culturable cellsâ€â€™. Environmental Microbiology Reports, 2021, 13, 253-254.	2.4	4
12	Waiting for Godot: response to â€~How dead is dead? Viable but nonâ€culturable versus persister cells'. Environmental Microbiology Reports, 2021, 13, 246-247.	2.4	2
13	Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	75
14	<scp><i>Vibrio splendidus</i></scp> persister cells induced by host coelomic fluids show a similar phenotype to antibioticâ€induced counterparts. Environmental Microbiology, 2021, 23, 5605-5620.	3.8	10
15	Conjugative plasmid-encoded toxin–antitoxin system PrpT/PrpA directly controls plasmid copy number. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
16	<i>Escherichia coli</i> cryptic prophages sense nutrients to influence persister cell resuscitation. Environmental Microbiology, 2021, 23, 7245-7254.	3.8	9
17	Persister cells resuscitate via ribosome modification by 23S rRNA pseudouridine synthase RluD. Environmental Microbiology, 2020, 22, 850-857.	3.8	25
18	Persister Cells Resuscitate Using Membrane Sensors that Activate Chemotaxis, Lower cAMP Levels, and Revive Ribosomes. IScience, 2020, 23, 100792.	4.1	56

#	Article	IF	CITATIONS
19	Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system. Nucleic Acids Research, 2020, 48, 11054-11067.	14.5	27
20	Combatting Persister Cells With Substituted Indoles. Frontiers in Microbiology, 2020, 11, 1565.	3.5	24
21	(p)ppGpp and Its Role in Bacterial Persistence: New Challenges. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	62
22	A Primary Physiological Role of Toxin/Antitoxin Systems Is Phage Inhibition. Frontiers in Microbiology, 2020, 11, 1895.	3.5	111
23	Mechanisms of Tolerance and Resistance to Chlorhexidine in Clinical Strains of Klebsiella pneumoniae Producers of Carbapenemase: Role of New Type II Toxin-Antitoxin System, PemIK. Toxins, 2020, 12, 566.	3.4	15
24	Copper Kills Escherichia coli Persister Cells. Antibiotics, 2020, 9, 506.	3.7	7
25	Toxin/Antitoxin System Paradigms: Toxins Bound to Antitoxins Are Not Likely Activated by Preferential Antitoxin Degradation. Advanced Biology, 2020, 4, e1900290.	3.0	57
26	ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochemical and Biophysical Research Communications, 2020, 523, 281-286.	2.1	71
27	Forming and waking dormant cells: The ppGpp ribosome dimerization persister model. Biofilm, 2020, 2, 100018.	3.8	49
28	Symbiosis of a P2â€ f amily phage and deepâ€sea <i>Shewanella putrefaciens</i> . Environmental Microbiology, 2019, 21, 4212-4232.	3.8	16
29	Precedence for the Role of Indole with Pathogens. MBio, 2019, 10, .	4.1	5
30	Interkingdom signal indole inhibits <i>Pseudomonas aeruginosa</i> persister cell waking. Journal of Applied Microbiology, 2019, 127, 1768-1775.	3.1	31
31	Seeding Public Goods Is Essential for Maintaining Cooperation in Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 2322.	3.5	8
32	Toxins of toxin/antitoxin systems are inactivated primarily through promoter mutations. Journal of Applied Microbiology, 2019, 127, 1859-1868.	3.1	7
33	Resistance to oxidative stress by inner membrane protein ElaB is regulated by OxyR and RpoS. Microbial Biotechnology, 2019, 12, 392-404.	4.2	21
34	Pseudogene YdfW in Escherichia coli decreases hydrogen production through nitrate respiration pathways. International Journal of Hydrogen Energy, 2019, 44, 16212-16223.	7.1	4
35	Identification of a potent indigoid persister antimicrobial by screening dormant cells. Biotechnology and Bioengineering, 2019, 116, 2263-2274.	3.3	24
36	σ ₅₄ â€Dependent regulator DVU2956 switches <i>Desulfovibrio vulgaris</i> from biofilm formation to planktonic growth and regulates hydrogen sulfide production. Environmental Microbiology, 2019, 21, 3564-3576.	3.8	18

#	Article	IF	CITATIONS
37	Phages Mediate Bacterial Self-Recognition. Cell Reports, 2019, 27, 737-749.e4.	6.4	20
38	Editorial: Quorum Network (Sensing/Quenching) in Multidrug-Resistant Pathogens. Frontiers in Cellular and Infection Microbiology, 2019, 9, 80.	3.9	8
39	Ribosome dependence of persister cell formation and resuscitation. Journal of Microbiology, 2019, 57, 213-219.	2.8	38
40	Editorial: Drug Re-purposing for the Treatment of Bacterial and Viral Infections. Frontiers in Cellular and Infection Microbiology, 2019, 9, 387.	3.9	1
41	Quorum sensing between Gram-negative bacteria responsible for methane production in a complex waste sewage sludge consortium. Applied Microbiology and Biotechnology, 2019, 103, 1485-1495.	3.6	32
42	Viable bacteria persist on antibiotic spacers following twoâ€ s tage revision for periprosthetic joint infection. Journal of Orthopaedic Research, 2018, 36, 452-458.	2.3	37
43	Viable but nonâ€culturable and persistence describe the same bacterial stress state. Environmental Microbiology, 2018, 20, 2038-2048.	3.8	175
44	GhoT of the GhoT/GhoS toxin/antitoxin system damages lipid membranes by forming transient pores. Biochemical and Biophysical Research Communications, 2018, 497, 467-472.	2.1	7
45	Glycoside hydrolase DisH fromDesulfovibrio vulgarisdegrades theNâ€acetylgalactosamine component of diverse biofilms. Environmental Microbiology, 2018, 20, 2026-2037.	3.8	15
46	Current state and perspectives in hydrogen production by Escherichia coli: roles of hydrogenases in glucose or glycerol metabolism. Applied Microbiology and Biotechnology, 2018, 102, 2041-2050.	3.6	26
47	Single cell observations show persister cells wake based on ribosome content. Environmental Microbiology, 2018, 20, 2085-2098.	3.8	94
48	Quorum Sensing Systems and Persistence. , 2018, , 17-27.		0
49	Pseudogene product YqiG is important for pflB expression and biohydrogen production in Escherichia coli BW25113. 3 Biotech, 2018, 8, 435.	2.2	1
50	Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria. Npj Biofilms and Microbiomes, 2018, 4, 22.	6.4	59
51	Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis. Biotechnology for Biofuels, 2018, 11, 211.	6.2	30
52	Substrate Binding Protein DppA1 of ABC Transporter DppBCDF Increases Biofilm Formation in Pseudomonas aeruginosa by Inhibiting Pf5 Prophage Lysis. Frontiers in Microbiology, 2018, 9, 30.	3.5	20
53	Serine Hydroxymethyltransferase ShrA (PA2444) Controls Rugose Small-Colony Variant Formation in Pseudomonas aeruginosa. Frontiers in Microbiology, 2018, 9, 315.	3.5	14
54	Post-segregational Killing and Phage Inhibition Are Not Mediated by Cell Death Through Toxin/Antitoxin Systems. Frontiers in Microbiology, 2018, 9, 814.	3.5	95

#	Article	IF	CITATIONS
55	Pyocyanin Restricts Social Cheating in Pseudomonas aeruginosa. Frontiers in Microbiology, 2018, 9, 1348.	3.5	59
56	Computational de novo design of antibodies binding to a peptide with high affinity. Biotechnology and Bioengineering, 2017, 114, 1331-1342.	3.3	25
57	Interkingdom Cues by Bacteria Associated with Conspecific and Heterospecific Eggs of <i>Cochliomyia macellaria</i> and <i>Chrysomya rufifacies</i> (Diptera: Calliphoridae) Potentially Govern Succession on Carrion. Annals of the Entomological Society of America, 2017, 110, 73-82.	2.5	14
58	Tail-Anchored Inner Membrane Protein ElaB Increases Resistance to Stress While Reducing Persistence in Escherichia coli. Journal of Bacteriology, 2017, 199, .	2.2	31
59	Tolerant, Growing Cells from Nutrient Shifts Are Not Persister Cells. MBio, 2017, 8, .	4.1	37
60	Electricity from methane by reversing methanogenesis. Nature Communications, 2017, 8, 15419.	12.8	127
61	Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays, 2017, 39, 1600203.	2.5	56
62	A Genomeâ€ s cale Modeling Approach to Quantify Biofilm Component Growth of <i>Salmonella Typhimurium</i> . Journal of Food Science, 2017, 82, 154-166.	3.1	7
63	Dispersal and inhibitory roles of mannose, 2â€deoxyâ€ <scp>d</scp> â€glucose and <i>N</i> â€acetylgalactosaminidase on the biofilm of <i>Desulfovibrio vulgaris</i> . Environmental Microbiology Reports, 2017, 9, 779-787.	2.4	14
64	Strategies for combating persister cell and biofilm infections. Microbial Biotechnology, 2017, 10, 1054-1056.	4.2	59
65	Reactive micromixing eliminates fouling and concentration polarization in reverse osmosis membranes. Journal of Membrane Science, 2017, 542, 8-17.	8.2	39
66	Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections. International Journal of Antimicrobial Agents, 2017, 49, 88-92.	2.5	61
67	Metabolic manipulation of methanogens for methane machinations. Microbial Biotechnology, 2017, 10, 9-10.	4.2	5
68	Metabolic engineering of <i>Methanosarcina acetivorans</i> for lactate production from methane. Biotechnology and Bioengineering, 2017, 114, 852-861.	3.3	39
69	Commentary: What Is the Link between Stringent Response, Endoribonuclease Encoding Type II Toxin-Antitoxin Systems and Persistence?. Frontiers in Microbiology, 2017, 8, 191.	3.5	31
70	Selection of Functional Quorum Sensing Systems by Lysogenic Bacteriophages in Pseudomonas aeruginosa. Frontiers in Microbiology, 2017, 8, 1669.	3.5	30
71	Repurposing of Anticancer Drugs for the Treatment of Bacterial Infections. Current Topics in Medicinal Chemistry, 2017, 17, 1157-1176.	2.1	80
72	Exploiting Quorum Sensing Inhibition for the Control of Pseudomonas aeruginosa and Acinetobacter baumannii Biofilms. Current Topics in Medicinal Chemistry, 2017, 17, 1915-1927.	2.1	30

#	Article	IF	CITATIONS
73	Toxin-Antitoxin Systems in Clinical Pathogens. Toxins, 2016, 8, 227.	3.4	105
74	Persistent Persister Misperceptions. Frontiers in Microbiology, 2016, 07, 2134.	3.5	72
75	Cryptic prophages as targets for drug development. Drug Resistance Updates, 2016, 27, 30-38.	14.4	58
76	Combatting bacterial persister cells. Biotechnology and Bioengineering, 2016, 113, 476-483.	3.3	100
77	DNAâ€crosslinker cisplatin eradicates bacterial persister cells. Biotechnology and Bioengineering, 2016, 113, 1984-1992.	3.3	95
78	Persistence Increases in the Absence of the Alarmone Guanosine Tetraphosphate by Reducing Cell Growth. Scientific Reports, 2016, 6, 20519.	3.3	105
79	An oxygen-sensitive toxin–antitoxin system. Nature Communications, 2016, 7, 13634.	12.8	63
80	Halogenated indoles eradicate bacterial persister cells and biofilms. AMB Express, 2016, 6, 123.	3.0	80
81	Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2802-11.	7.1	52
82	The HigB/HigA toxin/antitoxin system of <i>Pseudomonas aeruginosa</i> influences the virulence factors pyochelin, pyocyanin, and biofilm formation. MicrobiologyOpen, 2016, 5, 499-511.	3.0	101
83	Can resistance against quorum-sensing interference be selected?. ISME Journal, 2016, 10, 4-10.	9.8	80
84	<i>Streptomyces</i> -derived actinomycin D inhibits biofilm formation by <i>Staphylococcus aureus</i> and its hemolytic activity. Biofouling, 2016, 32, 45-56.	2.2	39
85	Toxin MqsR cleaves singleâ€stranded <scp>mRNA</scp> with various 5' ends. MicrobiologyOpen, 2016, 5, 370-377.	3.0	9
86	Antibiotic-tolerant Staphylococcus aureus Biofilm Persists on Arthroplasty Materials. Clinical Orthopaedics and Related Research, 2016, 474, 1649-1656.	1.5	76
87	Reversing methanogenesis to capture methane for liquid biofuel precursors. Microbial Cell Factories, 2016, 15, 11.	4.0	116
88	Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microbial Cell Factories, 2016, 15, 10.	4.0	40
89	Toxin YafQ Reduces Escherichia coli Growth at Low Temperatures. PLoS ONE, 2016, 11, e0161577.	2.5	4
90	Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12. Scientific Reports, 2015, 5, 16074.	3.3	28

#	Article	IF	CITATIONS
91	Role of quorum sensing in bacterial infections. World Journal of Clinical Cases, 2015, 3, 575.	0.8	168
92	Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus) (Diptera: Culicidae), to a Blood-Feeding Source. PLoS ONE, 2015, 10, e0143950.	2.5	19
93	An Integrated Modeling and Experimental Approach to Study the Influence of Environmental Nutrients on Biofilm Formation of <i>Pseudomonas aeruginosa </i> . BioMed Research International, 2015, 2015, 1-12.	1.9	11
94	Orphan Toxin OrtT (YdcX) of Escherichia coli Reduces Growth during the Stringent Response. Toxins, 2015, 7, 299-321.	3.4	23
95	Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol. Applied Microbiology and Biotechnology, 2015, 99, 2573-2581.	3.6	14
96	CO2 sequestration by methanogens in activated sludge for methane production. Applied Energy, 2015, 142, 426-434.	10.1	58
97	Metabolic engineering of Escherichia coli to enhance acetol production from glycerol. Applied Microbiology and Biotechnology, 2015, 99, 7945-7952.	3.6	24
98	High variability in quorum quenching and growth inhibition by furanone C-30 in <i>Pseudomonas aeruginosa</i> clinical isolates from cystic fibrosis patients. Pathogens and Disease, 2015, 73, ftv040.	2.0	57
99	Combatting bacterial infections by killing persister cells with mitomycin <scp>C</scp> . Environmental Microbiology, 2015, 17, 4406-4414.	3.8	154
100	Roles of Indole as an Interspecies and Interkingdom Signaling Molecule. Trends in Microbiology, 2015, 23, 707-718.	7.7	396
101	The <scp>MqsR</scp> / <scp>MqsA</scp> toxin/antitoxin system protects <scp><i>E</i></scp> <i>scherichia coli</i> during bile acid stress. Environmental Microbiology, 2015, 17, 3168-3181.	3.8	55
102	Toxin <scp>YafQ</scp> increases persister cell formation by reducing indole signalling. Environmental Microbiology, 2015, 17, 1275-1285.	3.8	88
103	Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole. Biotechnology and Bioengineering, 2015, 112, 588-600.	3.3	75
104	Methane oxidation by anaerobic archaea for conversion to liquid fuels. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 391-401.	3.0	32
105	A metagenomic assessment of the bacteria associated with Lucilia sericata and Lucilia cuprina (Diptera:) Tj ETQq1	1,0.78431 3.6	l4 ₅ rgBT /C₩
106	Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME Journal, 2015, 9, 115-125.	9.8	161
107	BdcA, a Protein Important for Escherichia coli Biofilm Dispersal, Is a Short-Chain Dehydrogenase/Reductase that Binds Specifically to NADPH. PLoS ONE, 2014, 9, e105751.	2.5	18
108	YeeO from <i>Escherichia coli</i> exports flavins. Bioengineered, 2014, 5, 386-392.	3.2	57

Thomas K Wood

#	Article	IF	CITATIONS
109	Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity. Bioengineered, 2014, 5, 264-268.	3.2	44
110	RalR (a DNase) and RalA (a small RNA) form a type I toxin–antitoxin system in Escherichia coli. Nucleic Acids Research, 2014, 42, 6448-6462.	14.5	98
111	The role of substrate binding pocket residues phenylalanine 176 and phenylalanine 196 on <i>Pseudomonas</i> sp. OX1 toluene <i>o</i> â€xylene monooxygenase activity and regiospecificity. Biotechnology and Bioengineering, 2014, 111, 1506-1512.	3.3	11
112	Gallium induces the production of virulence factors in <i>Pseudomonas aeruginosa</i> . Pathogens and Disease, 2014, 70, 95-98.	2.0	47
113	Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Applied Microbiology and Biotechnology, 2014, 98, 4757-4770.	3.6	55
114	Toxin <scp>GhoT</scp> of the <scp>GhoT</scp> / <scp>GhoS</scp> toxin/antitoxin system damages the cell membrane to reduce adenosine triphosphate and to reduce growth under stress. Environmental Microbiology, 2014, 16, 1741-1754.	3.8	79
115	Evolution of Resistance to Quorum-Sensing Inhibitors. Microbial Ecology, 2014, 68, 13-23.	2.8	151
116	Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria. Microbiology (United Kingdom), 2014, 160, 2464-2473.	1.8	37
117	McbR/YncC: Implications for the Mechanism of Ligand and DNA Binding by a Bacterial GntR Transcriptional Regulator Involved in Biofilm Formation. Biochemistry, 2014, 53, 7223-7231.	2.5	25
118	Biofilm dispersal: deciding when it is better to travel. Molecular Microbiology, 2014, 94, 747-750.	2.5	14
119	Modeling Framework for investigating the Influence of Amino Acids on the Planktonic-Biofilm Transition of Pseudomonas aeruginosa. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 803-808.	0.4	0
120	de novo Synthesis of a Bacterial Toxin/Antitoxin System. Scientific Reports, 2014, 4, 4807.	3.3	21
121	Backbone and sidechain 1H, 15N and 13C assignments of Tyrosine Phosphatase related to Biofilm formation A (TpbA) of Pseudomonas aeruginosa. Biomolecular NMR Assignments, 2013, 7, 57-59.	0.8	1
122	Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants. International Journal of Medical Microbiology, 2013, 303, 574-582.	3.6	57
123	Ligand Binding Reduces Conformational Flexibility in the Active Site of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from Pseudomonas aeruginosa. Journal of Molecular Biology, 2013, 425, 2219-2231.	4.2	17
124	Four products from Escherichia coli pseudogenes increase hydrogen production. Biochemical and Biophysical Research Communications, 2013, 439, 576-579.	2.1	9
125	Resistance to Quorum-Quenching Compounds. Applied and Environmental Microbiology, 2013, 79, 6840-6846.	3.1	108
126	Bacterial Persister Cell Formation and Dormancy. Applied and Environmental Microbiology, 2013, 79, 7116-7121.	3.1	506

#	Article	IF	CITATIONS
127	Arrested Protein Synthesis Increases Persister-Like Cell Formation. Antimicrobial Agents and Chemotherapy, 2013, 57, 1468-1473.	3.2	286
128	Antitoxin MqsA Represses Curli Formation Through the Master Biofilm Regulator CsgD. Scientific Reports, 2013, 3, 3186.	3.3	83
129	A Survey of Bacterial Diversity From Successive Life Stages of Black Soldier Fly (Diptera:) Tj ETQq1 1 0.784314 rg	gBT_/Overlo	ock 10 Tf 50
130	Type <scp>II</scp> toxin/antitoxin <scp>MqsR</scp> / <scp>MqsA</scp> controls type <scp>V</scp> toxin/antitoxin <scp>GhoT</scp> GhoS. Environmental Microbiology, 2013, 15, 1734-1744.	3.8	100
131	Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol. International Journal of Hydrogen Energy, 2013, 38, 3905-3912.	7.1	35
132	Production of acetol from glycerol using engineered Escherichia coli. Bioresource Technology, 2013, 149, 238-243.	9.6	16
133	Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered Escherichia coli strain. International Journal of Hydrogen Energy, 2013, 38, 10277-10283.	7.1	37
134	Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in <i>Pseudomonas aeruginosa</i> clinical isolates. Pathogens and Disease, 2013, 68, 8-11.	2.0	93
135	Precedence for the Structural Role of Flagella in Biofilms. MBio, 2013, 4, e00225-13.	4.1	13
136	Bacteria Mediate Oviposition by the Black Soldier Fly, Hermetia illucens (L.), (Diptera: Stratiomyidae). Scientific Reports, 2013, 3, 2563.	3.3	83
137	Gene target identification for biofilm-associated pathogens: an application to pseudomonas aeruginosa. , 2013, , .		0
138	A Systems-Level Approach for Investigating Pseudomonas aeruginosa Biofilm Formation. PLoS ONE, 2013, 8, e57050.	2.5	33
139	Indole Production Promotes Escherichia coli Mixed-Culture Growth with Pseudomonas aeruginosa by Inhibiting Quorum Signaling. Applied and Environmental Microbiology, 2012, 78, 411-419.	3.1	105
140	Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nature Communications, 2012, 3, 613.	12.8	152
141	Human intestinal epithelial cell-derived molecule(s) increase enterohemorrhagic <i>Escherichia coli</i> virulence. FEMS Immunology and Medical Microbiology, 2012, 66, 399-410.	2.7	9
142	A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nature Chemical Biology, 2012, 8, 855-861.	8.0	268
143	Uncharacterized Escherichia coli proteins YdjA and YhjY are related to biohydrogen production. International Journal of Hydrogen Energy, 2012, 37, 17778-17787.	7.1	28
144	Interkingdom responses of flies to bacteria mediated by fly physiology and bacterial quorum sensing. Animal Behaviour, 2012, 84, 1449-1456.	1.9	83

#	Article	IF	CITATIONS
145	<i>Proteus mirabilis</i> interkingdom swarming signals attract blow flies. ISME Journal, 2012, 6, 1356-1366.	9.8	101
146	A microfluidic device for high throughput bacterial biofilm studies. Lab on A Chip, 2012, 12, 1157.	6.0	60
147	Quorum quenching quandary: resistance to antivirulence compounds. ISME Journal, 2012, 6, 493-501.	9.8	254
148	Hydrogen production by recombinant <i>Escherichia coli</i> strains. Microbial Biotechnology, 2012, 5, 214-225.	4.2	62
149	Bacterial persistence increases as environmental fitness decreases. Microbial Biotechnology, 2012, 5, 509-522.	4.2	137
150	Interkingdom adenosine signal reduces <i>Pseudomonas aeruginosa</i> pathogenicity. Microbial Biotechnology, 2012, 5, 560-572.	4.2	12
151	Antitoxin DinJ influences the general stress response through transcript stabilizer CspE. Environmental Microbiology, 2012, 14, 669-679.	3.8	68
152	Toxin-Antitoxin Systems Influence Biofilm and Persister Cell Formation and the General Stress Response. Applied and Environmental Microbiology, 2011, 77, 5577-5583.	3.1	368
153	Escherichia coli BdcA controls biofilm dispersal in Pseudomonas aeruginosa and Rhizobium meliloti. BMC Research Notes, 2011, 4, 447.	1.4	38
154	Antitoxin MqsA helps mediate the bacterial general stress response. Nature Chemical Biology, 2011, 7, 359-366.	8.0	201
155	Protein acetylation in prokaryotes increases stress resistance. Biochemical and Biophysical Research Communications, 2011, 410, 846-851.	2.1	92
156	Environmental factors affecting indole production in Escherichia coli. Research in Microbiology, 2011, 162, 108-116.	2.1	102
157	Engineering a novel câ€diâ€GMPâ€binding protein for biofilm dispersal. Environmental Microbiology, 2011, 13, 631-642.	3.8	80
158	IS <i>5</i> inserts upstream of the master motility operon <i>flhDC</i> in a quasi-Lamarckian way. ISME Journal, 2011, 5, 1517-1525.	9.8	46
159	Engineering biofilm formation and dispersal. Trends in Biotechnology, 2011, 29, 87-94.	9.3	111
160	Transcriptomic Analysis for Genetic Mechanisms of the Factors Related to Biofilm Formation in Escherichia coli O157:H7. Current Microbiology, 2011, 62, 1321-1330.	2.2	29
161	GGDEF proteins Yeal, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli. Applied Microbiology and Biotechnology, 2011, 90, 651-658.	3.6	65
162	Fiber optic monooxygenase biosensor for toluene concentration measurement in aqueous samples. Biosensors and Bioelectronics, 2011, 26, 2407-2412.	10.1	23

#	Article	IF	CITATIONS
163	Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. International Journal of Hydrogen Energy, 2011, 36, 4323-4331.	7.1	64
164	Chemotaxis to the Quorum-Sensing Signal AI-2 Requires the Tsr Chemoreceptor and the Periplasmic LsrB AI-2-Binding Protein. Journal of Bacteriology, 2011, 193, 768-773.	2.2	118
165	Structure of the Escherichia coli Antitoxin MqsA (YgiT/b3021) Bound to Its Gene Promoter Reveals Extensive Domain Rearrangements and the Specificity of Transcriptional Regulation. Journal of Biological Chemistry, 2011, 286, 2285-2296.	3.4	62
166	LuxS Coexpression Enhances Yields of Recombinant Proteins in <i>Escherichia coli</i> in Part through Posttranscriptional Control of GroEL. Applied and Environmental Microbiology, 2011, 77, 2141-2152.	3.1	18
167	Controlling biofilm formation, prophage excision and cell death by rewiring global regulator Hâ€NS of <i>Escherichia coli</i> . Microbial Biotechnology, 2010, 3, 344-356.	4.2	66
168	Engineering global regulator Hha of <i>Escherichia coli</i> to control biofilm dispersal. Microbial Biotechnology, 2010, 3, 717-728.	4.2	52
169	Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films. International Journal of Hydrogen Energy, 2010, 35, 11768-11775.	7.1	114
170	<i>Escherichia coli</i> toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environmental Microbiology, 2010, 12, 1105-1121.	3.8	147
171	The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 228-233.	7.1	660
172	Role of <i>luxS</i> in <i>Bacillus anthracis</i> growth and virulence factor expression. Virulence, 2010, 1, 72-83.	4.4	35
173	Cryptic prophages help bacteria cope with adverse environments. Nature Communications, 2010, 1, 147.	12.8	560
174	Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochemical and Biophysical Research Communications, 2010, 391, 209-213.	2.1	225
175	An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochemical and Biophysical Research Communications, 2010, 391, 1033-1038.	2.1	98
176	Global regulator H-NS and lipoprotein NlpI influence production of extracellular DNA in Escherichia coli. Biochemical and Biophysical Research Communications, 2010, 401, 197-202.	2.1	26
177	Tyrosine phosphatase TpbA controls rugose colony formation in Pseudomonas aeruginosa by dephosphorylating diguanylate cyclase TpbB. Biochemical and Biophysical Research Communications, 2010, 402, 351-355.	2.1	21
178	Tyrosine phosphatase TpbA of <i>Pseudomonas aeruginosa</i> controls extracellular DNA via cyclic diguanylic acid concentrations. Environmental Microbiology Reports, 2010, 2, 449-455.	2.4	42
179	Toxin-Antitoxin Systems in <i>Escherichia coli</i> Influence Biofilm Formation through YjgK (TabA) and Fimbriae. Journal of Bacteriology, 2009, 191, 1258-1267.	2.2	159
180	Three Dimensional Structure of the MqsR:MqsA Complex: A Novel TA Pair Comprised of a Toxin Homologous to RelE and an Antitoxin with Unique Properties. PLoS Pathogens, 2009, 5, e1000706.	4.7	159

#	Article	IF	CITATIONS
181	Rapid Methods for High-Throughput Detection of Sulfoxides. Applied and Environmental Microbiology, 2009, 75, 4711-4719.	3.1	8
182	Uracil influences quorum sensing and biofilm formation in <i>Pseudomonas aeruginosa</i> and fluorouracil is an antagonist. Microbial Biotechnology, 2009, 2, 62-74.	4.2	139
183	Indole and 7â€hydroxyindole diminish <i>Pseudomonas aeruginosa</i> virulence. Microbial Biotechnology, 2009, 2, 75-90.	4.2	214
184	Bioremediation, a broad perspective. Microbial Biotechnology, 2009, 2, 125-127.	4.2	16
185	5-Fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound. Applied Microbiology and Biotechnology, 2009, 82, 525-533.	3.6	62
186	The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Applied Microbiology and Biotechnology, 2009, 84, 763-776.	3.6	65
187	Identification of stress-related proteins in <i>Escherichia coli</i> using the pollutant <i>cis</i> -dichloroethylene. Journal of Applied Microbiology, 2009, 108, 2088-102.	3.1	63
188	Control and benefits of CP4-57 prophage excision in <i>Escherichia coli</i> biofilms. ISME Journal, 2009, 3, 1164-1179.	9.8	98
189	Insights on <i>Escherichia coli</i> biofilm formation and inhibition from wholeâ€transcriptome profiling. Environmental Microbiology, 2009, 11, 1-15.	3.8	175
190	OmpA influences <i>Escherichia coli</i> biofilm formation by repressing cellulose production through the CpxRA twoâ€component system. Environmental Microbiology, 2009, 11, 2735-2746.	3.8	132
191	A naturally occurring brominated furanone covalently modifies and inactivates LuxS. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6200-6204.	2.2	101
192	Protein Engineering of the Transcriptional Activator FhlA To Enhance Hydrogen Production in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2009, 75, 5639-5646.	3.1	39
193	Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas aeruginosa through Tyrosine Phosphatase TpbA (PA3885). PLoS Pathogens, 2009, 5, e1000483.	4.7	304
194	Reconfiguring the Quorum-Sensing Regulator SdiA of <i>Escherichia coli</i> To Control Biofilm Formation via Indole and <i>N</i> -Acylhomoserine Lactones. Applied and Environmental Microbiology, 2009, 75, 1703-1716.	3.1	106
195	PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes. Applied Microbiology and Biotechnology, 2008, 78, 293-307.	3.6	53
196	Temporal regulation of enterohemorrhagic Escherichia coli virulence mediated by autoinducer-2. Applied Microbiology and Biotechnology, 2008, 78, 811-819.	3.6	76
197	Protein engineering of hydrogenase 3 to enhance hydrogen production. Applied Microbiology and Biotechnology, 2008, 79, 77-86.	3.6	52
198	Potassium and sodium transporters of Pseudomonas aeruginosa regulate virulence to barley. Applied Microbiology and Biotechnology, 2008, 79, 843-58.	3.6	14

#	Article	IF	CITATIONS
199	Molecular approaches in bioremediation. Current Opinion in Biotechnology, 2008, 19, 572-578.	6.6	91
200	<i>Escherichia coli</i> transcription factor YncC (McbR) regulates colanic acid and biofilm formation by repressing expression of periplasmic protein YbiM (McbA). ISME Journal, 2008, 2, 615-631.	9.8	72
201	Indole cell signaling occurs primarily at low temperatures in <i>Escherichia coli</i> . ISME Journal, 2008, 2, 1007-1023.	9.8	111
202	<i>Pseudomonas aeruginosa</i> PAO1 virulence factors and poplar tree response in the rhizosphere. Microbial Biotechnology, 2008, 1, 17-29.	4.2	69
203	Metabolic engineering to enhance bacterial hydrogen production. Microbial Biotechnology, 2008, 1, 30-39.	4.2	146
204	Metabolically engineered bacteria for producing hydrogen via fermentation. Microbial Biotechnology, 2008, 1, 107-125.	4.2	126
205	Bacterial Quorum Sensing: Signals, Circuits, and Implications for Biofilms and Disease. Annual Review of Biomedical Engineering, 2008, 10, 145-167.	12.3	281
206	Detection of recombinant Pseudomonas putida in the wheat rhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA. Applied Microbiology and Biotechnology, 2008, 79, 511-518.	3.6	10
207	Protein Engineering of Toluene Monooxygenases for Synthesis of Chiral Sulfoxides. Applied and Environmental Microbiology, 2008, 74, 1555-1566.	3.1	41
208	The R1 Conjugative Plasmid Increases <i>Escherichia coli</i> Biofilm Formation through an Envelope Stress Response. Applied and Environmental Microbiology, 2008, 74, 2690-2699.	3.1	53
209	Protein Translation and Cell Death: The Role of Rare tRNAs in Biofilm Formation and in Activating Dormant Phage Killer Genes. PLoS ONE, 2008, 3, e2394.	2.5	102
210	Quorum Sensing in Escherichia coli Is Signaled by AI-2/LsrR: Effects on Small RNA and Biofilm Architecture. Journal of Bacteriology, 2007, 189, 6011-6020.	2.2	200
211	An Inducible Propane Monooxygenase Is Responsible for <i>N</i> -Nitrosodimethylamine Degradation by <i>Rhodococcus</i> sp. Strain RHA1. Applied and Environmental Microbiology, 2007, 73, 6930-6938.	3.1	98
212	Transport and survival of GFP-tagged root-colonizing microbes: Implications for rhizodegradation. European Journal of Soil Biology, 2007, 43, 224-232.	3.2	16
213	Structure and Function of the Escherichia coli Protein YmgB: A Protein Critical for Biofilm Formation and Acid-resistance. Journal of Molecular Biology, 2007, 373, 11-26.	4.2	89
214	Enterohemorrhagic Escherichia coli Biofilms Are Inhibited by 7-Hydroxyindole and Stimulated by Isatin. Applied and Environmental Microbiology, 2007, 73, 4100-4109.	3.1	175
215	Differential Effects of Epinephrine, Norepinephrine, and Indole on Escherichia coli O157:H7 Chemotaxis, Colonization, and Gene Expression. Infection and Immunity, 2007, 75, 4597-4607.	2.2	300
216	YcfR (BhsA) Influences Escherichia coli Biofilm Formation through Stress Response and Surface Hydrophobicity. Journal of Bacteriology, 2007, 189, 3051-3062.	2.2	187

#	Article	IF	CITATIONS
217	Magnetic nanofactories: Localized synthesis and delivery of quorum-sensing signaling molecule autoinducer-2 to bacterial cell surfaces. Metabolic Engineering, 2007, 9, 228-239.	7.0	30
218	Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. BMC Biotechnology, 2007, 7, 25.	3.3	56
219	Temporal gene-expression in Escherichia coli K-12 biofilms. Environmental Microbiology, 2007, 9, 332-346.	3.8	283
220	The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environmental Microbiology, 2007, 9, 2486-2495.	3.8	184
221	Interference with the quorum sensing systems in a Vibrio harveyi strain alters the growth rate of gnotobiotically cultured rotifer Brachionus plicatilis. Journal of Applied Microbiology, 2007, 103, 194-203.	3.1	50
222	Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiology, 2007, 7, 42.	3.3	388
223	Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Applied Microbiology and Biotechnology, 2007, 76, 1035-1042.	3.6	90
224	Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2007, 77, 879-890.	3.6	151
225	YdgG (TqsA) Controls Biofilm Formation in <i>Escherichia coli</i> K-12 through Autoinducer 2 Transport. Journal of Bacteriology, 2006, 188, 587-598.	2.2	192
226	Autoinducer 2 Controls Biofilm Formation in Escherichia coli through a Novel Motility Quorum-Sensing Regulator (MqsR, B3022). Journal of Bacteriology, 2006, 188, 305-316.	2.2	478
227	Quorum Sensing-Disrupting Brominated Furanones Protect the Gnotobiotic Brine Shrimp Artemia franciscana from Pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus Isolates. Applied and Environmental Microbiology, 2006, 72, 6419-6423.	3.1	169
228	Proteome Changes after Metabolic Engineering to Enhance Aerobic Mineralization of cis-1,2-Dichloroethylene. Journal of Proteome Research, 2006, 5, 1388-1397.	3.7	31
229	A stochastic model of Escherichia coli Alâ€2 quorum signal circuit reveals alternative synthesis pathways. Molecular Systems Biology, 2006, 2, 67.	7.2	53
230	Motility influences biofilm architecture in Escherichia coli. Applied Microbiology and Biotechnology, 2006, 72, 361-367.	3.6	286
231	Orthric Rieske dioxygenases for degrading mixtures of 2,4-dinitrotoluene/naphthalene and 2-amino-4,6-dinitrotoluene/4-amino-2,6-dinitrotoluene. Applied Microbiology and Biotechnology, 2006, 73, 827-838.	3.6	23
232	Genotypic Characterization and Phylogenetic Relations of Pseudomonas sp. (Formerly P. stutzeri) OX1. Current Microbiology, 2006, 52, 395-399.	2.2	13
233	Hha, YbaJ, and OmpA regulateEscherichia coli K12 biofilm formation and conjugation plasmids abolish motility. Biotechnology and Bioengineering, 2006, 93, 188-200.	3.3	96
234	Oxidation of aminonitrotoluenes by 2,4-DNT dioxygenase ofBurkholderia sp. strain DNT. Biotechnology and Bioengineering, 2006, 93, 231-237.	3.3	8

Thomas K Wood

#	Article	IF	CITATIONS
235	Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining theSolanum tuberosum and an evolvedAgrobacterium radiobacter AD1 epoxide hydrolases. Biotechnology and Bioengineering, 2006, 94, 522-529.	3.3	67
236	Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Biotechnology and Bioengineering, 2006, 95, 399-403.	3.3	40
237	YliH (BssR) and YceP (BssS) Regulate Escherichia coli K-12 Biofilm Formation by Influencing Cell Signaling. Applied and Environmental Microbiology, 2006, 72, 2449-2459.	3.1	215
238	Engineering Plant-Microbe Symbiosis for Rhizoremediation of Heavy Metals. Applied and Environmental Microbiology, 2006, 72, 1129-1134.	3.1	261
239	Protein Engineering of the 4-Methyl-5-Nitrocatechol Monooxygenase from Burkholderia sp. Strain DNT for Enhanced Degradation of Nitroaromatics. Applied and Environmental Microbiology, 2006, 72, 3933-3939.	3.1	25
240	Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnology and Bioengineering, 2005, 89, 608-618.	3.3	102
241	Regiospecific oxidation of naphthalene and fluorene by toluene monooxygenases and engineered toluene 4-monooxygenases ofPseudomonas mendocina KR1. Biotechnology and Bioengineering, 2005, 90, 85-94.	3.3	29
242	Saturation mutagenesis of 2,4-DNT dioxygenase ofBurkholderia sp. strain DNT for enhanced dinitrotoluene degradation. Biotechnology and Bioengineering, 2005, 92, 416-426.	3.3	29
243	Alanine 101 and alanine 110 of the alpha subunit ofPseudomonas stutzeri OX1 toluene-o-xylene monooxygenase influence the regiospecific oxidation of aromatics. Biotechnology and Bioengineering, 2005, 92, 652-658.	3.3	7
244	Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Applied Microbiology and Biotechnology, 2005, 66, 696-701.	3.6	30
245	Quorum-sensing antagonist (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone influences siderophore biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2005, 66, 689-695.	3.6	59
246	Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Applied Microbiology and Biotechnology, 2005, 66, 422-429.	3.6	111
247	Reductive transformation of TNT by Escherichia coli: pathway description. Applied Microbiology and Biotechnology, 2005, 67, 397-404.	3.6	36
248	Aluminum- and mild steel-binding peptides from phage display. Applied Microbiology and Biotechnology, 2005, 68, 505-509.	3.6	72
249	Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for enhanced chlorinated ethene degradation and o-xylene oxidation. Applied Microbiology and Biotechnology, 2005, 68, 510-517.	3.6	30
250	Phenol and 2-naphthol production by toluene 4-monooxygenases using an aqueous/dioctyl phthalate system. Applied Microbiology and Biotechnology, 2005, 68, 614-621.	3.6	29
251	TNT and nitroaromatic compounds are chemoattractants for Burkholderia cepacia R34 and Burkholderia sp. strain DNT. Applied Microbiology and Biotechnology, 2005, 69, 321-325.	3.6	20
252	Reductive transformation of TNT by Escherichia coli resting cells: kinetic analysis. Applied Microbiology and Biotechnology, 2005, 69, 326-334.	3.6	10

#	Article	IF	CITATIONS
253	Protein Engineering of the Archetypal Nitroarene Dioxygenase of Ralstonia sp. Strain U2 for Activity on Aminonitrotoluenes and Dinitrotoluenes through Alpha-Subunit Residues Leucine 225, Phenylalanine 350, and Glycine 407. Journal of Bacteriology, 2005, 187, 3302-3310.	2.2	30
254	Differential Gene Expression for Investigation of Escherichia coli Biofilm Inhibition by Plant Extract Ursolic Acid. Applied and Environmental Microbiology, 2005, 71, 4022-4034.	3.1	208
255	Controlling the Regiospecific Oxidation of Aromatics via Active Site Engineering of Toluene para-Monooxygenase of Ralstonia pickettii PKO1. Journal of Biological Chemistry, 2005, 280, 506-514.	3.4	68
256	Protein Engineering of Epoxide Hydrolase from Agrobacterium radiobacter AD1 for Enhanced Activity and Enantioselective Production of (R)-1-Phenylethane-1,2-Diol. Applied and Environmental Microbiology, 2005, 71, 3995-4003.	3.1	79
257	Alpha-Subunit Positions Methionine 180 and Glutamate 214 of Pseudomonas stutzeri OX1 Toluene- o -Xylene Monooxygenase Influence Catalysis. Journal of Bacteriology, 2005, 187, 1511-1514.	2.2	25
258	Inhibition of <i>Bacillus anthracis</i> Growth and Virulenceâ€Gene Expression by Inhibitors of Quorumâ€6ensing. Journal of Infectious Diseases, 2005, 191, 1881-1888.	4.0	58
259	Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone. Journal of Biotechnology, 2005, 115, 145-156.	3.8	28
260	The importance of live biofilms in corrosion protection. Corrosion Science, 2005, 47, 279-287.	6.6	95
261	Stationary-Phase Quorum-Sensing Signals Affect Autoinducer-2 and Gene Expression in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2004, 70, 2038-2043.	3.1	94
262	Oxidation of Benzene to Phenol, Catechol, and 1,2,3-Trihydroxybenzene by Toluene 4-Monooxygenase of Pseudomonas mendocina KR1 and Toluene 3-Monooxygenase of Ralstonia pickettii PKO1. Applied and Environmental Microbiology, 2004, 70, 3814-3820.	3.1	122
263	Protein Engineering of Toluene-o-Xylene Monooxygenase from Pseudomonas stutzeri OX1 for Synthesizing 4-Methylresorcinol, Methylhydroquinone, and Pyrogallol. Applied and Environmental Microbiology, 2004, 70, 3253-3262.	3.1	67
264	Saturation Mutagenesis of Burkholderia cepacia R34 2,4-Dinitrotoluene Dioxygenase at DntAc Valine 350 for Synthesizing Nitrohydroquinone, Methylhydroquinone, and Methoxyhydroquinone. Applied and Environmental Microbiology, 2004, 70, 3222-3231.	3.1	41
265	Differential Gene Expression To Investigate the Effect of (5Z)-4-Bromo- 5-(Bromomethylene)-3-Butyl-2() Tj ETQq1	1 0.7843 3.1	14 rgBT /0
266	Toluene 3-Monooxygenase of Ralstonia pickettii PKO1 Is a para-Hydroxylating Enzyme. Journal of Bacteriology, 2004, 186, 3117-3123.	2.2	63
267	Altering Toluene 4-Monooxygenase by Active-Site Engineering for the Synthesis of 3-Methoxycatechol, Methoxyhydroquinone, and Methylhydroquinone. Journal of Bacteriology, 2004, 186, 4705-4713.	2.2	76
268	Saturation Mutagenesis of Toluene ortho-Monooxygenase of Burkholderia cepacia G4 for Enhanced 1-Naphthol Synthesis and Chloroform Degradation. Applied and Environmental Microbiology, 2004, 70, 3246-3252.	3.1	75
269	Active Site Engineering of the Epoxide Hydrolase from Agrobacterium radiobacter AD1 to Enhance Aerobic Mineralization of cis-1,2-Dichloroethylene in Cells Expressing an Evolved Toluene ortho-Monooxygenase. Journal of Biological Chemistry, 2004, 279, 46810-46817.	3.4	59
270	Metabolic pathway engineering to enhance aerobic degradation of chlorinated ethenes and to reduce their toxicity by cloning a novel glutathione S-transferase, an evolved toluene o-monooxygenase, and gamma-glutamylcysteine synthetase. Environmental Microbiology, 2004, 6, 491-500.	3.8	35

#	Article	IF	CITATIONS
271	(5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone reduces corrosion from Desulfotomaculum orientis. Environmental Microbiology, 2004, 6, 535-540.	3.8	24
272	Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms. Applied Microbiology and Biotechnology, 2004, 65, 747-753.	3.6	51
273	Mesophilic aerobic degradation of a metal lubricant by a biological consortium. Applied Microbiology and Biotechnology, 2004, 65, 620-6.	3.6	5
274	Gene expression inBacillus subtilis surface biofilms with and without sporulation and the importance ofyver for biofilm maintenance. Biotechnology and Bioengineering, 2004, 86, 344-364.	3.3	75
275	Protein engineering of toluene 4-monooxygenase ofPseudomonas mendocina KR1 for synthesizing 4-nitrocatechol from nitrobenzene. Biotechnology and Bioengineering, 2004, 87, 779-790.	3.3	48
276	Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system ofEscherichia coli. Biotechnology and Bioengineering, 2004, 88, 630-642.	3.3	205
277	Physiological relevance of successive hydroxylations of toluene by toluenepara-monooxygenase ofRalstonia pickettiiPKO1. Biocatalysis and Biotransformation, 2004, 22, 283-289.	2.0	8
278	Proteomic changes in Escherichia coli TG1 after metabolic engineering for enhanced trichloroethene biodegradation. Proteomics, 2003, 3, 1066-1069.	2.2	10
279	Antimicrobial properties of the R1 plasmid host killing peptide. Journal of Biotechnology, 2003, 100, 1-12.	3.8	26
280	Directed Evolution of Toluene ortho-Monooxygenase for Enhanced 1-Naphthol Synthesis and Chlorinated Ethene Degradation. Journal of Bacteriology, 2002, 184, 344-349.	2.2	159
281	Corrosion control using regenerative biofilms (CCURB) on brass in different media. Corrosion Science, 2002, 44, 2291-2302.	6.6	55
282	Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Letters in Applied Microbiology, 2002, 34, 293-299.	2.2	120
283	Active expression of soluble methane monooxygenase from Methylosinus trichosporium OB3b in heterologous hosts. Microbiology (United Kingdom), 2002, 148, 3328-3329.	1.8	11
284	Pitting corrosion control using regenerative biofilms on aluminium 2024 in artificial seawater. Corrosion Science, 2001, 43, 2121-2133.	6.6	48
285	Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environmental Microbiology, 2001, 3, 731-736.	3.8	301
286	Aerobic degradation of mixtures of chlorinated aliphatics by cloned toluene-o-xylene monooxygenase and tolueneo-monooxygenase in resting cells. Biotechnology and Bioengineering, 2000, 70, 693-698.	3.3	36
287	Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nature Biotechnology, 2000, 18, 775-778.	17.5	132
288	Rhizosphere Competitiveness of Trichloroethylene-Degrading, Poplar-Colonizing Recombinant Bacteria. Applied and Environmental Microbiology, 2000, 66, 4673-4678.	3.1	64

#	Article	IF	CITATIONS
289	Modeling trichloroethylene degradation by a recombinant pseudomonad expressing tolueneortho-monooxygenase in a fixed-film bioreactor. , 1998, 59, 40-51.		20
290	Degradation of perchloroethylene and dichlorophenol by pulsed-electric discharge and bioremediation. , 1998, 59, 438-444.		25
291	Electroporation of Pink-Pigmented methylotrophic bacteria. Applied Biochemistry and Biotechnology, 1998, 73, 81-88.	2.9	3
292	Characterization of axenic Pseudomonas fragi and Escherichia coli biofilms that inhibit corrosion of SAE 1018 steel. Journal of Applied Microbiology, 1998, 84, 485-492.	3.1	48
293	Rhizoremediation of Trichloroethylene by a Recombinant, Root-Colonizing <i>Pseudomonas fluorescens</i> Strain Expressing Toluene <i>ortho</i> -Monooxygenase Constitutively. Applied and Environmental Microbiology, 1998, 64, 112-118.	3.1	139
294	Oxidation of Trichloroethylene, 1,1-Dichloroethylene, and Chloroform by Toluene/ o -Xylene Monooxygenase from Pseudomonas stutzeri OX1. Applied and Environmental Microbiology, 1998, 64, 3023-3024.	3.1	65
295	2,4-Dichlorophenol Degradation Using Streptomyces viridosporus T7A Lignin Peroxidase. Biotechnology Progress, 1997, 13, 53-59.	2.6	51
296	Trichloroethylene mineralization in a fixed-film bioreactor using a pure culture expressing constitutively tolueneortho -monooxygenase. , 1997, 55, 674-685.		31
297	Optimization of trichloroethylene degradation using soluble methane monooxygenase ofMethylosinus trichosporium OB3b expressed in recombinant bacteria. Biotechnology and Bioengineering, 1996, 51, 349-359.	3.3	45
298	Enhanced Expression and Hydrogen Peroxide Dependence of Lignin Peroxidase from Streptomyces viridosporus T7A. Biotechnology Progress, 1996, 12, 40-46.	2.6	16
299	Elicitation of lignin peroxidase inStreptomyces lividans. Applied Biochemistry and Biotechnology, 1996, 60, 139-149.	2.9	4
300	Evaluation of thehok/sok killer locus for enhanced plasmid stability. Biotechnology and Bioengineering, 1994, 44, 912-921.	3.3	31
301	Temperature and Growth Rate Effects on the hoc/soc Killer Locus for Enhanced Plasmid Stability. Biotechnology Progress, 1994, 10, 621-629.	2.6	10
302	Effect of chemically-induced, cloned-gene expression on protein synthesis inE. Coli. Biotechnology and Bioengineering, 1991, 38, 397-412.	3.3	56
303	Construction of a specialized-ribosome vector or cloned-gene expression inE. coli. Biotechnology and Bioengineering, 1991, 38, 891-906.	3.3	17
304	Depression of protein synthetic capacity due to cloned-gene expression inE. coli. Biotechnology and Bioengineering, 1990, 36, 865-878.	3.3	37
305	Atmospheric plasma induced sterilization and chemical neutralization. , 0, , .		9
306	Optimization of trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium OB3b expressed in recombinant bacteria. , 0, .		3

18

#	Article	IF	CITATIONS
307	Phage Mediate Bacterial Self Recognition. SSRN Electronic Journal, 0, , .	0.4	Ο