List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5390098/publications.pdf Version: 2024-02-01

YUSUKE IN

#	Article	IF	CITATIONS
1	Conformation Selectivity and Disharmony of the Lattice Constant Depending on the Guest Size in Clathrate Hydrates. Journal of Physical Chemistry C, 2022, 126, 58-65.	3.1	4
2	Permeability Measurement and Prediction with Nuclear Magnetic Resonance Analysis of Gas Hydrate-Bearing Sediments Recovered from Alaska North Slope 2018 Hydrate-01 Stratigraphic Test Well. Energy & Fuels, 2022, 36, 2515-2529.	5.1	11
3	Comprehensive pressure core analysis for hydrate-bearing sediments from Gulf of Mexico Green Canyon Block 955, including assessments of geomechanical viscous behavior and nuclear magnetic resonance permeability. AAPG Bulletin, 2022, 106, 1143-1177.	1.5	10
4	Multiple physical properties of gas hydrate-bearing sediments recovered from Alaska North Slope 2018 Hydrate-01 Stratigraphic Test Well. Marine and Petroleum Geology, 2021, 123, 104748.	3.3	33
5	Mechanical properties of polycrystalline tetrahydrofuran hydrates as analogs for massive natural gas hydrates. Journal of Natural Gas Science and Engineering, 2021, 96, 104284.	4.4	11
6	Thermodynamic and crystallographic properties depending on hydration numbers in tetra-n-butylammonium chloride semiclathrate hydrates. Journal of Chemical Thermodynamics, 2020, 142, 106004.	2.0	5
7	Natural Gas Hydrates Recovered from the Umitaka Spur in the Joetsu Basin, Japan: Coexistence of Two Structure-I Hydrates with Distinctly Different Textures and Gas Compositions within a Massive Structure. ACS Earth and Space Chemistry, 2020, 4, 77-85.	2.7	14
8	Thermal properties of tetragonal tetra- <i>n</i> -butyl ammonium bromide + tetra- <i>n</i> -butyl ammonium chloride mixed semiclathrate hydrates based on hydration numbers and guest mole fraction rates. Journal of Applied Physics, 2020, 128, .	2.5	5
9	Pyrazine Analogues on Clathrate Hydrates in Methane–Water Systems. Journal of Chemical & Engineering Data, 2020, 65, 4150-4156.	1.9	1
10	Film-growth rates of methane hydrate on ice surfaces. Journal of Crystal Growth, 2020, 537, 125595.	1.5	8
11	Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna–Godavari Basin, offshore India. Marine and Petroleum Geology, 2019, 108, 524-536.	3.3	113
12	Evaluation of failure modes and undrained shear strength by cone penetrometer for Natural Gas hydrate-bearing pressure-core sediment samples recovered from the Krishna–Godavari Basin, offshore India. Marine and Petroleum Geology, 2019, 108, 502-511.	3.3	12
13	Lithological properties of natural gas hydrate–bearing sediments in pressure-cores recovered from the Krishna–Godavari Basin. Marine and Petroleum Geology, 2019, 108, 439-470.	3.3	40
14	Crystal Phase Conditions of Semiclathrate Hydrates in Nitrogen–Tetra- <i>n</i> -butylammonium Bromide–Water Systems below 1 MPa. Journal of Chemical & Engineering Data, 2019, 64, 2843-2848.	1.9	7
15	Structure H Clathrate Hydrates in Methaneâ^'Halogenic Large Molecule Substance–Water Systems. Journal of Physical Chemistry C, 2019, 123, 17170-17175.	3.1	8
16	Changes in the 13C NMR spectra of tetra-n-butylammonium chloride by clathrate hydration. Chemical Physics, 2019, 522, 233-237.	1.9	7
17	In Situ Mechanical Properties of Shallow Gas Hydrate Deposits in the Deep Seabed. Geophysical Research Letters, 2019, 46, 14459-14468.	4.0	35
18	Numerical analysis of gas production potential from a gas-hydrate reservoir at Site NGHP-02-16, the Krishna–Godavari Basin, offshore India–Feasibility of depressurization method for ultra-deepwater environment. Marine and Petroleum Geology, 2019, 108, 731-740.	3.3	48

#	Article	IF	CITATIONS
19	Crystallographic and geochemical properties of natural gas hydrates accumulated in the National Gas Hydrate Program Expedition 02 drilling sites in the Krishna-Godavari Basin off India. Marine and Petroleum Geology, 2019, 108, 471-481.	3.3	23
20	Pressure core based onshore laboratory analysis on mechanical properties of hydrate-bearing sediments recovered during India's National Gas Hydrate Program Expedition (NGHP) 02. Marine and Petroleum Geology, 2019, 108, 482-501.	3.3	76
21	Consolidation and hardening behavior of hydrate-bearing pressure-core sediments recovered from the Krishna–Godavari Basin, offshore India. Marine and Petroleum Geology, 2019, 108, 512-523.	3.3	55
22	Pressure-core-based reservoir characterization for geomechanics: Insights from gas hydrate drilling during 2012–2013 at the eastern Nankai Trough. Marine and Petroleum Geology, 2017, 86, 1-16.	3.3	112
23	Clathrate Hydrate Equilibrium in Methane–Water Systems with the Addition of Monosaccharide and Sugar Alcohol. Journal of Chemical & Engineering Data, 2017, 62, 440-444.	1.9	11
24	Improvement of gas hydrate preservation by increasing compression pressure to simple hydrates of methane, ethane, and propane. Japanese Journal of Applied Physics, 2017, 56, 095601.	1.5	16
25	In Situ Methane Hydrate Morphology Investigation: Natural Gas Hydrate-Bearing Sediment Recovered from the Eastern Nankai Trough Area. Energy & Fuels, 2016, 30, 5547-5554.	5.1	51
26	Strengthening mechanism of cemented hydrateâ€bearing sand at microscales. Geophysical Research Letters, 2016, 43, 7442-7450.	4.0	109
27	Hydrate Equilibrium Conditions for Water, Diethylene Glycol Monoethyl Ether Acetate, and Methane. Journal of Chemical & Engineering Data, 2016, 61, 3692-3697.	1.9	4
28	Hydraulic fracturing in methane-hydrate-bearing sand. RSC Advances, 2016, 6, 73148-73155.	3.6	99
29	Phase Transition of Tetra- <i>n</i> -butylammonium Bromide Hydrates Enclosing Krypton. Journal of Chemical & Engineering Data, 2016, 61, 679-685.	1.9	17
30	Structural properties of methane and butane mixed-gas hydrates. Chemical Engineering Science, 2016, 140, 10-15.	3.8	16
31	Phase Equilibrium for Gas Hydrates Formed from Deuterium Oxide. Journal of Chemical & Engineering Data, 2015, 60, 1939-1944.	1.9	11
32	Contribution of water molecules to methane hydrate dissociation. Japanese Journal of Applied Physics, 2015, 54, 065502.	1.5	5
33	Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough. Marine and Petroleum Geology, 2015, 66, 471-486.	3.3	207
34	Lithological features of hydrate-bearing sediments and their relationship with gas hydrate saturation in the eastern Nankai Trough, Japan. Marine and Petroleum Geology, 2015, 66, 368-378.	3.3	93
35	Dissociation behaviour of (tetra-n-butylammonium bromide + tetra-n-butylammonium chloride) mixed semiclathrate hydrate systems. Journal of Chemical Thermodynamics, 2015, 90, 277-281.	2.0	29
36	Bulk sediment mineralogy of gas hydrate reservoir at the East Nankai offshore production test site. Marine and Petroleum Geology, 2015, 66, 379-387.	3.3	40

#	Article	IF	CITATIONS
37	Chemical and crystallographic characterizations of natural gas hydrates recovered from a production test site in the eastern Nankai Trough. Marine and Petroleum Geology, 2015, 66, 396-403.	3.3	55
38	Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough. Marine and Petroleum Geology, 2015, 66, 487-495.	3.3	173
39	Structural Characterization of Structure H (sH) Clathrate Hydrates Enclosing Nitrogen and 2,2-Dimethylbutane. Journal of Physical Chemistry C, 2015, 119, 9069-9075.	3.1	24
40	Mechanical behavior of hydrate-bearing pressure-core sediments visualized under triaxial compression. Marine and Petroleum Geology, 2015, 66, 451-459.	3.3	120
41	Effect of methane hydrate morphology on compressional wave velocity of sandy sediments: Analysis of pressure cores obtained in the Eastern Nankai Trough. Marine and Petroleum Geology, 2015, 66, 425-433.	3.3	66
42	Pressurization effects on methane hydrate dissociation. Japanese Journal of Applied Physics, 2014, 53, 018003.	1.5	7
43	Pressurized subsampling system for pressured gas-hydrate-bearing sediment: Microscale imaging using X-ray computed tomography. Review of Scientific Instruments, 2014, 85, 094502.	1.3	31
44	Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment. RSC Advances, 2014, 4, 51666-51675.	3.6	148
45	Crystal Phase Boundaries of Structure-H (sH) Clathrate Hydrates with Rare Gas (Krypton and Xenon) and Bromide Large Molecule Guest Substances. Journal of Chemical & Engineering Data, 2014, 59, 1704-1709.	1.9	7
46	Structure H (sH) Clathrate Hydrate with New Large Molecule Guest Substances. Journal of Physical Chemistry C, 2013, 117, 23469-23475.	3.1	25
47	Change in the Stable Crystal Phase of Tetra- <i>n</i> -butylammonium Bromide (TBAB) Hydrates Enclosing Xenon. Journal of Physical Chemistry C, 2013, 117, 6924-6928.	3.1	30
48	Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas–water permeability measurements of methane-hydrate-bearing sediments. Review of Scientific Instruments, 2013, 84, 064501.	1.3	38
49	Microscopic Equilibrium Determination for Structure-H (sH) Clathrate Hydrates at the Liquid–Liquid Interface: Krypton–Liquid Hydrocarbon–Water System. Journal of Chemical & Engineering Data, 2012, 57, 2614-2618.	1.9	10
50	Phase Equilibrium Conditions for Clathrate Hydrates of Tetra- <i>n</i> -butylammonium Bromide (TBAB) and Xenon. Journal of Chemical & Engineering Data, 2012, 57, 1829-1833.	1.9	24
51	Growth of Methane Clathrate Hydrates in Porous Media. Energy & Fuels, 2012, 26, 2242-2247.	5.1	71
52	Dissociation Behavior of Methane Hydrate in Sandy Porous Media below the Quadruple Point. Energy & Fuels, 2012, 26, 4310-4320.	5.1	63
53	A Pore-Scale Numerical Simulation Method for Estimating the Permeability of Sand Sediment. Transport in Porous Media, 2012, 94, 1-17.	2.6	23
54	Morphological Change in Structure H Clathrates of Methane and Liquid Hydrocarbon at the Liquid–Liquid Interface. Crystal Growth and Design, 2011, 11, 3149-3152.	3.0	14

#	Article	IF	CITATIONS
55	Phase Equilibrium Conditions for Krypton Clathrate Hydrate below the Freezing Point of Water. Journal of Chemical & Engineering Data, 2011, 56, 58-61.	1.9	24
56	Effective control of gas hydrate dissociation above the melting point of ice. Physical Chemistry Chemical Physics, 2011, 13, 18481.	2.8	11
57	Dissociation Behavior of Methaneâ^'Ethane Mixed Gas Hydrate Coexisting Structures I and II. Journal of Physical Chemistry A, 2010, 114, 9456-9461.	2.5	17
58	Infrared Spectroscopy of Gas Hydrate Dissociation Behavior During Depressurization. Japanese Journal of Applied Physics, 2009, 48, 108001.	1.5	14
59	Characterization of permeability and thermal conductivity of methane hydrate sediments using microfocous X-ray computed tomography technique. Journal of the Japanese Association for Petroleum Technology, 2009, 74, 290-296.	0.0	3
60	On the water dimer contribution to the OH stretching absorption band profile in pressurized water vapour. Molecular Physics, 2008, 106, 1155-1159.	1.7	16
61	Observation of Xe Hydrate Growth at Gasâ^'Ice Interface by Microfocus X-ray Computed Tomography. Journal of Physical Chemistry C, 2008, 112, 17253-17256.	3.1	33
62	New Method of Assessing Absolute Permeability of Natural Methane Hydrate Sediments by Microfocus X-ray Computed Tomography. Japanese Journal of Applied Physics, 2007, 46, 3159-3162.	1.5	32
63	Local Synthesis of Single-walled Carbon Nanotubes on Zeolite-covered Silicon Substrate by Laser-heating Chemical Vapor Depositon. , 2007, , .		0
64	Rapid and Localized Synthesis of Single-Walled Carbon Nanotubes on Flat Surface by Laser-Assisted Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2007, 46, L333-L335.	1.5	17
65	Structural Investigation of Methane Hydrate Sediments by Microfocus X-ray Computed Tomography Technique under High-Pressure Conditions. Japanese Journal of Applied Physics, 2006, 45, L714-L716.	1.5	58
66	Density evolution of absorption bandshapes in the water vapor OH-stretching fundamental and overtone: evidence for molecular aggregation. Journal of Molecular Structure, 2005, 742, 173-181.	3.6	14
67	Spectroscopic study of mutual solubilities of water and benzene at high temperatures and pressures. Journal of Chemical Physics, 2005, 122, 024509.	3.0	9
68	Spectroscopic study of water-NaCl-benzene mixtures at high temperatures and pressures. Journal of Chemical Physics, 2005, 123, 214504.	3.0	1
69	Near infrared study of water-benzene mixtures at high temperatures and pressures. Journal of Chemical Physics, 2004, 121, 2694.	3.0	8
70	Near-infrared spectroscopic study of water at high temperatures and pressures. Journal of Chemical Physics, 2003, 119, 12432-12438.	3.0	42
71	Competitive formation of 10- and 7-membered hydrogen-bonded rings of proline-containing model peptides. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 2795-2802.	3.9	15