Michael A Peshkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/538997/publications.pdf

Version: 2024-02-01

89 papers 3,376 citations

304743 22 h-index 233421 45 g-index

90 all docs 90 docs citations

90 times ranked 2548 citing authors

#	Article	IF	CITATIONS
1	A Low-Parameter Rendering Algorithm for Fine Textures. IEEE Transactions on Haptics, 2022, 15, 57-61.	2.7	3
2	A Soft Wearable Tactile Device Using Lateral Skin Stretch. , 2021, , .		4
3	Spatial perception of textures depends on length-scale. , 2021, , .		3
4	Building a Navigable Fine Texture Design Space. IEEE Transactions on Haptics, 2021, 14, 897-906.	2.7	10
5	SwitchPaD: Active Lateral Force Feedback over a Large Area Based on Switching Resonant Modes. Lecture Notes in Computer Science, 2020, , 217-225.	1.3	1
6	UltraShiver: Lateral Force Feedback on a Bare Fingertip via Ultrasonic Oscillation and Electroadhesion. IEEE Transactions on Haptics, 2019, 12, 497-507.	2.7	15
7	Localized Rendering of Button Click Sensation via Active Lateral Force Feedback. , 2019, , .		9
8	On the electrical characterization of electroadhesive displays and the prominent interfacial gap impedance associated with sliding fingertips. , 2018 , , .		17
9	UltraShiver: Lateral force feedback on a bare fingertip via ultrasonic oscillation and electroadhesion. , 2018, , .		15
10	Single pitch perception of multi-frequency textures. , 2018, , .		13
11	Human-in-the-loop active electrosense. Bioinspiration and Biomimetics, 2017, 12, 014001.	2.9	3
12	The application of tactile, audible, and ultrasonic forces to human fingertips using broadband electroadhesion. , 2017 , , .		9
13	The contribution of air to ultrasonic friction reduction. , 2017, , .		4
14	Enhanced detection performance in electrosense through capacitive sensing. Bioinspiration and Biomimetics, 2016, 11, 055001.	2.9	12
15	Pressure and Draw-In Maps for Stamping Process Monitoring. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2016, 138, .	2.2	5
16	Tactile Paintbrush: A procedural method for generating spatial haptic texture. , 2016, , .		29
17	Viscous textures: Velocity dependence in fingertip-surface scanning interaction. , 2016, , .		1
18	Multiple Fingers – One Gestalt. IEEE Transactions on Haptics, 2016, 9, 255-266.	2.7	3

#	Article	IF	Citations
19	Modeling and synthesis of tactile texture with spatial spectrograms for display on variable friction surfaces. , $2015, , .$		17
20	Coincidence avoidance principle in surface haptic interpretation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2605-2610.	7.1	2
21	Finding and identifying simple objects underwater with active electrosense. International Journal of Robotics Research, 2015, 34, 1255-1277.	8.5	40
22	Surface haptics via electroadhesion: Expanding electrovibration with Johnsen and Rahbek. , 2015, , .		65
23	Dynamics of ultrasonic and electrostatic friction modulation for rendering texture on haptic surfaces. , 2014, , .		66
24	Search Efficiency for Tactile Features Rendered by Surface Haptic Displays. IEEE Transactions on Haptics, 2014, 7, 545-550.	2.7	4
25	A High-Fidelity Surface-Haptic Device for Texture Rendering on Bare Finger. Lecture Notes in Computer Science, 2014, , 241-248.	1.3	40
26	Development of a Mechatronic Platform and Validation of Methods for Estimating Ankle Stiffness During the Stance Phase of Walking. Journal of Biomechanical Engineering, 2013, 135, 81009.	1.3	45
27	Perceptual collapse: The fusion of spatially distinct tactile cues into a single percept., 2013,,.		3
28	Fingertip friction modulation due to electrostatic attraction., 2013,,.		91
29	Sensing capacitance of underwater objects in bio-inspired electrosense. , 2012, , .		15
30	LateralPaD: A surface-haptic device that produces lateral forces on a bare finger. , 2012, , .		10
31	Surface haptic feature attenuation due to contact on opposing surface. , 2012, , .		3
32	Inertia Compensation Control of a One-Degree-of-Freedom Exoskeleton for Lower-Limb Assistance: Initial Experiments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 68-77.	4.9	107
33	Design and validation of a platform robot for determination of ankle impedance during ambulation. , 2011, 2011, 8179-82.		8
34	A Cyclic Robot for Lower Limb Exercise. Journal of Medical Devices, Transactions of the ASME, 2011, 5, .	0.7	0
35	Development of a Model Osseo-Magnetic Link for Intuitive Rotational Control of Upper-Limb Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 213-220.	4.9	13
36	Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. International Journal of Robotics Research, 2011, 30, 486-499.	8.5	103

#	Article	IF	CITATIONS
37	Enhancing physicality in touch interaction with programmable friction., 2011,,.		111
38	Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain, 2011, 134, 747-758.	7.6	366
39	ShiverPaD: A Glass Haptic Surface That Produces Shear Force on a Bare Finger. IEEE Transactions on Haptics, 2010, 3, 189-198.	2.7	87
40	Preswing Knee Flexion Assistance Is Coupled With Hip Abduction in People With Stiff-Knee Gait After Stroke, 2010, 41, 1709-1714.	2.0	76
41	On the Design of Miniature Haptic Devices for Upper Extremity Prosthetics. IEEE/ASME Transactions on Mechatronics, 2010, 15, 27-39.	5.8	81
42	Friction measurements on a Large Area TPaD. , 2010, , .		44
43	Using Kinesthetic and Tactile Cues to Maintain Exercise Intensity. IEEE Transactions on Haptics, 2009, 2, 224-235.	2.7	4
44	Tooling-integrated sensing systems for stamping process monitoring. International Journal of Machine Tools and Manufacture, 2009, 49, 634-644.	13.4	38
45	Adaptation to knee flexion torque during gait. , 2009, , .		2
46	A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke. IEEE Transactions on Robotics, 2009, 25, 539-548.	10.3	117
47	ShiverPad: A device capable of controlling shear force on a bare finger. , 2009, , .		8
48	Pulling your strings. IEEE Robotics and Automation Magazine, 2008, 15, 70-78.	2.0	5
49	Physical Collaboration of Human-Human and Human-Robot Teams. IEEE Transactions on Haptics, 2008, 1, 108-120.	2.7	185
50	Safety for Physical Human–Robot Interaction. , 2008, , 1335-1348.		142
51	KineAssist: Design and Development of a Robotic Overground Gait and Balance Therapy Device. Topics in Stroke Rehabilitation, 2008, 15, 131-139.	1.9	105
52	On the Design of a Thermal Display for Upper Extremity Prosthetics. , 2008, , .		5
53	Measuring and Increasing Z-Width with Active Electrical Damping. , 2008, , .		58
54	Causes of Microslip in a Continuously Variable Transmission. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	4

#	Article	IF	CITATIONS
55	A Miniature Tactor Design for Upper Extremity Prosthesis. , 2007, , .		5
56	Power Efficiency of the Rotational-to-Linear Infinitely Variable Cobotic Transmission. Journal of Mechanical Design, Transactions of the ASME, 2007, 129, 1285-1293.	2.9	6
57	A 1-DOF assistive exoskeleton with virtual negative damping: effects on the kinematic response of the lower limbs. , 2007, , .		34
58	Replicating Human-Human Physical Interaction. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	26
59	A Pilot Study of a Thermal Display Using a Miniature Tactor for Upper Extremity Prosthesis. , 2007, , .		3
60	Integrated Sensing System for Stamping Monitoring Control., 2007,,.		7
61	Design of a Mobile, Inexpensive Device for Upper Extremity Rehabilitation at Home., 2007,,.		23
62	Using Haptic Communications with the Leg to Maintain Exercise Intensity. , 2007, , .		6
63	Haptic Display of Constrained Dynamic Systems via Admittance Displays. IEEE Transactions on Robotics, 2007, 23, 101-111.	10.3	23
64	T-PaD: Tactile Pattern Display through Variable Friction Reduction. , 2007, , .		264
65	Active-Impedance Control of a Lower-Limb Assistive Exoskeleton. , 2007, , .		118
66	The Cobotic Hand Controller: Design, Control and Performance of a Novel Haptic Display. International Journal of Robotics Research, 2006, 25, 1099-1119.	8.5	50
67	Lessons learned from a novel teleoperation testbed. Industrial Robot, 2006, 33, 187-193.	2.1	27
68	Cobotic Architecture for Prosthetics. , 2006, 2006, 5635-7.		4
69	Controlling the Apparent Inertia of Passive Human-Interactive Robots. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2006, 128, 44-52.	1.6	10
70	Catastrophe and Stability Analysis of a Cable-Driven Actuator. , 2006, 2006, 2429-33.		3
71	Haptically Linked Dyads. Psychological Science, 2006, 17, 365-366.	3.3	122
72	Haptic cooperation between people, and between people and machines., 2006,,.		50

#	Article	IF	CITATIONS
73	Cobotic Architecture for Prosthetics. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	O
74	Catastrophe and Stability Analysis of a Cable-Driven Actuator. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
75	Static Single-Arm Force Generation With Kinematic Constraints. Journal of Neurophysiology, 2005, 93, 2752-2765.	1.8	24
76	A Draw-In Sensor for Process Control and Optimization. AIP Conference Proceedings, 2005, , .	0.4	6
77	Causes of Slip in a Continuously Variable Transmission. , 2003, , 775.		1
78	Motion Guides for Assisted Manipulation. International Journal of Robotics Research, 2002, 21, 27-43.	8.5	28
79	Kinematic Creep in a Continuously Variable Transmission: Traction Drive Mechanics for Cobots. Journal of Mechanical Design, Transactions of the ASME, 2002, 124, 713-722.	2.9	21
80	Toward Improved CVTs: Theoretical and Experimental Results. , 2002, , 855.		6
81	Cobots. Industrial Robot, 1999, 26, 335-341.	2.1	128
82	The use of localizers, robots and synergistic devices in CAS. Lecture Notes in Computer Science, 1997, , 725-736.	1.3	20
83	Registration and Immobilization in Robot-Assisted Surgery. Computer Aided Surgery, 1995, 1, 80-87.	1.8	2
84	Registration and immobilization in robot-assisted surgery. Journal of Image Guided Surgery, 1995, 1, 80-87.	0.3	23
85	Quantitative Evaluation of Neural Networks for NDE Applications Using the ROC Curve. , 1995, , 2405-2412.		3
86	Phase transitions in dilute, locally connected neural networks. Physical Review A, 1992, 45, 6135-6138.	2.5	2
87	Entropic predictions for cellular networks. Physical Review Letters, 1991, 67, 1803-1806.	7.8	91
88	Passive Robotics: An Exploration of Mechanical Computation. , 1990, , .		5
89	Integrator for measuring magnetic fields. Review of Scientific Instruments, 1981, 52, 1108-1109.	1.3	2