Vahid Asnafi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5389534/publications.pdf Version: 2024-02-01

νλημό Δενλεί

#	Article	IF	CITATIONS
1	Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology, 2003, 125, 730-745.	1.3	407
2	Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood, 2014, 123, 3739-3749.	1.4	281
3	Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood, 2010, 115, 3215-3223.	1.4	243
4	Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood, 2015, 125, 2486-2496.	1.4	233
5	NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood, 2009, 113, 3918-3924.	1.4	207
6	Toward a <i>NOTCH1/FBXW7/RAS/PTEN</i> –Based Oncogenetic Risk Classification of Adult T-Cell Acute Lymphoblastic Leukemia: A Group for Research in Adult Acute Lymphoblastic Leukemia Study. Journal of Clinical Oncology, 2013, 31, 4333-4342.	1.6	202
7	Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. Journal of Experimental Medicine, 2010, 207, 731-750.	8.5	169
8	Analysis of TCR, pTα, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood, 2003, 101, 2693-2703.	1.4	152
9	CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRÂÂ lineage. Blood, 2003, 102, 1000-1006.	1.4	148
10	Quality assessment program for <scp>E</scp> uro <scp>F</scp> low protocols: Summary results of fourâ€year (2010–2013) quality assurance rounds. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 145-156.	1.5	144
11	Early Response–Based Therapy Stratification Improves Survival in Adult Early Thymic Precursor Acute Lymphoblastic Leukemia: A Group for Research on Adult Acute Lymphoblastic Leukemia Study. Journal of Clinical Oncology, 2017, 35, 2683-2691.	1.6	134
12	Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. Journal of Clinical Investigation, 2018, 128, 3071-3087.	8.2	133
13	Interleukin-15-Dependent T-Cell-like Innate Intraepithelial Lymphocytes Develop in the Intestine and Transform into Lymphomas in Celiac Disease. Immunity, 2016, 45, 610-625.	14.3	131
14	Clinical Impact of <i>NOTCH1</i> and/or <i>FBXW7</i> Mutations, <i>FLASH</i> Deletion, and <i>TCR</i> Status in Pediatric T-Cell Lymphoblastic Lymphoma. Journal of Clinical Oncology, 2012, 30, 1966-1973.	1.6	111
15	Intensified Therapy of Acute Lymphoblastic Leukemia in Adults: Report of the Randomized GRAALL-2005 Clinical Trial. Journal of Clinical Oncology, 2018, 36, 2514-2523.	1.6	99
16	Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia. Blood, 2018, 131, 289-300.	1.4	97
17	Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood, 2012, 119, 4476-4479.	1.4	96
18	Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Blood, 2004, 104, 4173-4180.	1.4	94

#	Article	IF	CITATIONS
19	FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood, 2003, 102, 2198-2204.	1.4	90
20	TLX Homeodomain Oncogenes Mediate T Cell Maturation Arrest in T-ALL via Interaction with ETS1 and Suppression of TCRα Gene Expression. Cancer Cell, 2012, 21, 563-576.	16.8	81
21	PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. Blood, 2011, 117, 7090-7098.	1.4	76
22	Pediatric-Like Acute Lymphoblastic Leukemia Therapy in Adults With Lymphoblastic Lymphoma: The GRAALL-LYSA LL03 Study. Journal of Clinical Oncology, 2016, 34, 572-580.	1.6	76
23	Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia. Blood, 2011, 117, 6650-6659.	1.4	72
24	How should we diagnose and treat blastic plasmacytoid dendritic cell neoplasm patients?. Blood Advances, 2019, 3, 4238-4251.	5.2	72
25	Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nature Communications, 2016, 7, 10087.	12.8	65
26	Impact of TCR status and genotype on outcome in adult T-cell acute lymphoblastic leukemia: a LALA-94 study. Blood, 2005, 105, 3072-3078.	1.4	63
27	Prognostic and oncogenic relevance of TLX1/HOX11 expression level in T-ALLs. Blood, 2007, 110, 2324-2330.	1.4	60
28	Impact of genotype on survival of children with T-cell acute lymphoblastic leukemia treated according to the French protocol FRALLE-93: the effect of TLX3/HOX11L2 gene expression on outcome. Haematologica, 2008, 93, 1658-1665.	3.5	57
29	An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. Haematologica, 2016, 101, 732-740.	3.5	53
30	Pediatric-inspired intensified therapy of adult T-ALL reveals the favorable outcome of NOTCH1/FBXW7 mutations, but not of low ERG/BAALC expression: a GRAALL study. Blood, 2011, 118, 5099-5107.	1.4	50
31	Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study. Haematologica, 2016, 101, 336-345.	3.5	50
32	PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. Blood, 2019, 133, 280-284.	1.4	48
33	Oncogenetic landscape of lymphomagenesis in coeliac disease. Gut, 2022, 71, 497-508.	12.1	48
34	Different chromosomal breakpoints impact the level of LMO2 expression in T-ALL. Blood, 2007, 110, 388-392.	1.4	47
35	<i>JAK1</i> mutations are not frequent events in adult Tâ€ALL: a GRAALL study. British Journal of Haematology, 2010, 148, 178-179.	2.5	47
36	Site- and allele-specific polycomb dysregulation in T-cell leukaemia. Nature Communications, 2015, 6, 6094.	12.8	47

#	Article	IF	CITATIONS
37	NKp46 is a diagnostic biomarker and may be a therapeutic target in gastrointestinal T-cell lymphoproliferative diseases: a CELAC study. Gut, 2019, 68, 1396-1405.	12.1	47
38	T Cell Receptor Genotyping and <i>HOXA/TLX1</i> Expression Define Three T Lymphoblastic Lymphoma Subsets which Might Affect Clinical Outcome. Clinical Cancer Research, 2008, 14, 692-700.	7.0	43
39	The prognosis of CALM-AF10-positive adult T-cell acute lymphoblastic leukemias depends on the stage of maturation arrest. Haematologica, 2013, 98, 1711-1717.	3.5	41
40	Semaphorin 3F and Neuropilin-2 Control the Migration of Human T-Cell Precursors. PLoS ONE, 2014, 9, e103405.	2.5	40
41	SET-NUP214 is a recurrent $\hat{I}^{\hat{J}}$ lineage-specific fusion transcript associated with corticosteroid/chemotherapy resistance in adult T-ALL. Blood, 2014, 123, 1860-1863.	1.4	40
42	<i>DNMT3A</i> mutation is associated with increased age and adverse outcome in adult T-cell acute lymphoblastic leukemia. Haematologica, 2019, 104, 1617-1625.	3.5	40
43	Transcriptomic and genomic heterogeneity in blastic plasmacytoid dendritic cell neoplasms: from ontogeny to oncogenesis. Blood Advances, 2021, 5, 1540-1551.	5.2	35
44	Expression of T-lineage-affiliated transcripts and TCR rearrangements in acute promyelocytic leukemia: implications for the cellular target of t(15;17). Blood, 2006, 108, 3484-3493.	1.4	34
45	GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell, 2019, 36, 268-287.e10.	16.8	34
46	Peripheral blood 8 colour flow cytometry monitoring of hairy cell leukaemia allows detection of highâ€risk patients. British Journal of Haematology, 2014, 166, 50-59.	2.5	33
47	Triggering the TCR Developmental Checkpoint Activates a Therapeutically Targetable Tumor Suppressive Pathway in T-cell Leukemia. Cancer Discovery, 2016, 6, 972-985.	9.4	33
48	Response to 5â€azacytidine in a patient with <i>TET2</i> â€mutated angioimmunoblastic Tâ€cell lymphoma and chronic myelomonocytic leukaemia preceded by an EBVâ€positive large Bâ€cell lymphoma. Hematological Oncology, 2017, 35, 864-868.	1.7	33
49	Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow. Cell Reports, 2020, 30, 739-754.e4.	6.4	32
50	Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. Blood, 2012, 120, 3298-3309.	1.4	31
51	Homeobox protein TLX3 activates miR-125b expression to promote T-cell acute lymphoblastic leukemia. Blood Advances, 2017, 1, 733-747.	5.2	31
52	Methodological aspects of minimal residual disease assessment by flow cytometry in acute lymphoblastic leukemia: A french multicenter study. , 2015, 88, 21-29.		28
53	Epigenetic Silencing Affects <scp>l</scp> -Asparaginase Sensitivity and Predicts Outcome in T-ALL. Clinical Cancer Research, 2019, 25, 2483-2493.	7.0	25
54	ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon. Blood, 2010, 115, 3287-3295.	1.4	24

Vahid Asnafi

#	Article	IF	CITATIONS
55	Targeted deep sequencing reveals clonal and subclonal mutational signatures in Adult T-cell leukemia/lymphoma and defines an unfavorable indolent subtype. Leukemia, 2021, 35, 764-776.	7.2	24
56	PRC2 loss of function confers a targetable vulnerability to BET proteins in T-ALL. Blood, 2021, 138, 1855-1869.	1.4	23
57	Cryptic XPO1-MLLT10 translocation is associated with HOXA locus deregulation in T-ALL. Blood, 2014, 124, 3023-3025.	1.4	21
58	Adult T-cell acute lymphoblastic leukemias with IL7R pathway mutations are slow-responders who do not benefit from allogeneic stem-cell transplantation. Leukemia, 2020, 34, 1730-1740.	7.2	21
59	Arsenic trioxide (As2O3) as a maintenance therapy for adult T cell leukemia/lymphoma. Retrovirology, 2020, 17, 5.	2.0	20
60	Adult T cell leukemia aggressivenness correlates with loss of both 5-hydroxymethylcytosine and TET2 expression. Oncotarget, 2017, 8, 52256-52268.	1.8	20
61	RUNX1-dependent RAG1 deposition instigates human TCR-δlocus rearrangement. Journal of Experimental Medicine, 2014, 211, 1821-1832.	8.5	19
62	CD1d-restricted peripheral T cell lymphoma in mice and humans. Journal of Experimental Medicine, 2016, 213, 841-857.	8.5	19
63	Standardization of Flow Cytometric Immunophenotyping for Hematological Malignancies: The FranceFlow Group Experience. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 1008-1018.	1.5	18
64	Targeting IRAK1 in T-Cell acute lymphoblastic leukemia. Oncotarget, 2015, 6, 18956-18965.	1.8	16
65	Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation. Journal of Experimental Medicine, 2020, 217, .	8.5	15
66	Dynamics of broad H3K4me3 domains uncover an epigenetic switch between cell identity and cancer-related genes. Genome Research, 2022, 32, 1328-1342.	5.5	14
67	Normal and Pathological V(D)J Recombination: Contribution to the Understanding of Human Lymphoid Malignancies. Advances in Experimental Medicine and Biology, 2009, 650, 180-194.	1.6	13
68	Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Science Translational Medicine, 2021, 13, .	12.4	13
69	The Upper Age Limit for a Pediatric-Inspired Therapy in Younger Adults with Ph-Negative Acute Lymphoblastic Leukemia (ALL)? Analysis of the Graall-2005 Study. Blood, 2016, 128, 762-762.	1.4	13
70	Clinical and biological features of PTPN2-deleted adult and pediatric T-cell acute lymphoblastic leukemia. Blood Advances, 2019, 3, 1981-1988.	5.2	12
71	Acquired TET 2 mutation in one patient with familial platelet disorder with predisposition to AML led to the development of preâ€leukaemic clone resulting in T2―ALL and AML â€MO. Journal of Cellular and Molecular Medicine, 2017, 21, 1237-1242.	3.6	10
72	Low level CpG island promoter methylation predicts a poor outcome in adult T-cell acute lymphoblastic leukemia. Haematologica, 2020, 105, 1575-1581.	3.5	10

#	Article	IF	CITATIONS
73	Oncogenetic landscape and clinical impact of IDH1 and IDH2 mutations in T-ALL. Journal of Hematology and Oncology, 2021, 14, 74.	17.0	10
74	Clinico-biological features of T-cell acute lymphoblastic leukemia with fusion proteins. Blood Cancer Journal, 2022, 12, 14.	6.2	10
75	Genetic characterization and therapeutic targeting of <i>MYC</i> â€rearranged T cell acute lymphoblastic leukaemia. British Journal of Haematology, 2019, 185, 169-174.	2.5	9
76	Polycomb repressive complex 2 haploinsufficiency identifies a high-risk subgroup of pediatric acute myeloid leukemia. Leukemia, 2018, 32, 1878-1882.	7.2	8
77	<i>IKZF1</i> alterations predict poor prognosis in adult and pediatric T-ALL. Blood, 2021, 137, 1690-1694.	1.4	8
78	A transcriptomic continuum of differentiation arrest identifies myeloid interface acute leukemias with poor prognosis. Leukemia, 2021, 35, 724-736.	7.2	8
79	Direct interaction of Ikaros and Foxp1 modulates expression of the G protein-coupled receptor G2A in B-lymphocytes and acute lymphoblastic leukemia. Oncotarget, 2016, 7, 65923-65936.	1.8	8
80	Preclinical efficacy of humanized, non–FcγR-binding anti-CD3 antibodies in T-cell acute lymphoblastic leukemia. Blood, 2020, 136, 1298-1302.	1.4	7
81	Adenylate kinase 2 expression and addiction in T-ALL. Blood Advances, 2021, 5, 700-710.	5.2	7
82	C/EBPA methylation is common in T-ALL but not in MO AML. Blood, 2009, 113, 1864-1866.	1.4	6
83	CBFβ-SMMHC Affects Genome-wide Polycomb Repressive Complex 1 Activity in Acute Myeloid Leukemia. Cell Reports, 2020, 30, 299-307.e3.	6.4	6
84	A DL-4- and TNFα-based culture system to generate high numbers of nonmodified or genetically modified immunotherapeutic human T-lymphoid progenitors. Cellular and Molecular Immunology, 2021, 18, 1662-1676.	10.5	6
85	<i><scp>NAP</scp>1L1â€<scp>MLLT</scp>10</i> is a rare recurrent translocation that is associated with <i><scp>HOXA</scp></i> activation and poor treatment response in Tâ€cell acute lymphoblastic leukaemia. British Journal of Haematology, 2016, 174, 470-473.	2.5	5
86	Toward Pediatric T Lymphoblastic Lymphoma Stratification Based on Minimal Disseminated Disease and NOTCH1/FBXW7 Status. HemaSphere, 2021, 5, e641.	2.7	5
87	Oncogenetic landscape of T-cell lymphoblastic lymphomas compared to T-cell acute lymphoblastic leukemia. Modern Pathology, 2022, 35, 1227-1235.	5.5	5
88	A comprehensive catalog of LncRNAs expressed in T-cell acute lymphoblastic leukemia. Leukemia and Lymphoma, 2019, 60, 2002-2014.	1.3	4
89	Novel Intergenically Spliced Chimera, <i>NFATC3-PLA2G15</i> , Is Associated with Aggressive T-ALL Biology and Outcome. Molecular Cancer Research, 2018, 16, 470-475.	3.4	3
90	HiJAKing T-ALL. Blood, 2014, 124, 3038-3040.	1.4	2

#	ARTICLE	IF	CITATIONS
91	Prognostic value of Oncogenetic mutations in pediatric T Acute Lymphoblastic Leukemia: a comparison of UKALL2003 and FRALLE2000T protocols. Leukemia, 2021, , .	7.2	2
92	The Combination of Venetoclax and Tofacitinib Induced Hematological Responses in Patients with Relapse/ Refractory T-ALL with BCL2 Expression and Surface IL7R Expression or IL7R-Pathway Mutations (On behalf of the GRAALL). Blood, 2019, 134, 1339-1339.	1.4	2
93	NOTCH1/FBXW7 Mutation Identifies a Large Subgroup with Favorable Outcome in Adult T-ALL: A GRAALL Study Blood, 2008, 112, 1494-1494.	1.4	2
94	RUNX1 as a recombinase cofactor. Oncotarget, 2015, 6, 21793-21794.	1.8	2
95	Eight Colors Flow Cytometry Phenotyping for Blood Minimal Residual Disease Monitoring in Hairy Cell Leukaemia Patients Blood, 2009, 114, 1609-1609.	1.4	1
96	Integrated omics approaches to predict T-LBL relapse risk. Blood, 2021, 137, 2280-2282.	1.4	0
97	Prediction of Relapse Risk by Day 100 BCR-ABL Quantification after Allogeneic Stem Cell Transplantation for Chronic Myeloid Leukaemia Blood, 2005, 106, 2020-2020.	1.4	0
98	NOTCH1/FBXW7 Mutations, but Not Low ERG/BAALC Expression, Identify a Major Subgroup of Adult T-ALL with a Favorable Outcome: a GRAALL Study Blood, 2009, 114, 1568-1568.	1.4	0
99	Longitudinal Evolution and Clinical Impact of Subclonal Mutational Architecture in Adult T Cell Leukemia/Lymphoma. Blood, 2018, 132, 2841-2841.	1.4	0
100	Impact and Dynamics of <i>TP53</i> Mutated Clones in Shwachman Diamond Syndrome in a Series of 80 Patients. Blood, 2020, 136, 22-23.	1.4	0
101	De novo generation of the NPM-ALK fusion recapitulates the pleiotropic phenotypes of ALK+ ALCL pathogenesis and reveals the ROR2 receptor as target for tumor cells. Molecular Cancer, 2022, 21, 65.	19.2	Ο