Baike Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/538933/publications.pdf Version: 2024-02-01

BAIKE X

#	Article	IF	CITATIONS
1	Environmental effects on aerosol–cloud interaction in non-precipitating marine boundary layer (MBL) clouds over the eastern North Atlantic. Atmospheric Chemistry and Physics, 2022, 22, 335-354.	4.9	11
2	Maritime Aerosol and CCN Profiles Derived From Shipâ€Based Measurements Over Eastern North Pacific During MAGIC. Earth and Space Science, 2022, 9, .	2.6	0
3	Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign. Atmospheric Measurement Techniques, 2022, 15, 3761-3777.	3.1	1
4	Summertime low clouds mediate the impact of the large-scale circulation on Arctic sea ice. Communications Earth & Environment, 2021, 2, .	6.8	18
5	Integrative Monsoon Frontal Rainfall Experiment (IMFRE-I): A Mid-Term Review. Advances in Atmospheric Sciences, 2021, 38, 357-374.	4.3	2
6	New Observational Constraints on Warm Rain Processes and Their Climate Implications. Geophysical Research Letters, 2021, 48, e2020GL091836.	4.0	6
7	Maritime Cloud and Drizzle Microphysical Properties Retrieved From Shipâ€Based Observations During MAGIC. Earth and Space Science, 2021, 8, e2020EA001588.	2.6	2
8	Retrieving high-resolution surface photosynthetically active radiation from the MODIS and GOES-16 ABI data. Remote Sensing of Environment, 2021, 260, 112436.	11.0	10
9	The climate response to increased cloud liquid water over the Arctic in CESM1: a sensitivity study of Wegener–Bergeron–Findeisen process. Climate Dynamics, 2021, 56, 3373-3394.	3.8	8
10	Spatial Distribution and Impacts of Aerosols on Clouds Under Meiyu Frontal Weather Background Over Central China Based on Aircraft Observations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031915.	3.3	9
11	Statistical Characteristics of Raindrop Size Distributions and Parameters in Central China During the Meiyu Seasons. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031954.	3.3	19
12	Comparative Study of Cloud Liquid Water and Rain Liquid Water Obtained From Microwave Radiometer and Micro Rain Radar Observations Over Central China During the Monsoon. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032456.	3.3	12
13	Characteristics of Ice Cloud–Precipitation of Warm Season Mesoscale Convective Systems over the Great Plains. Journal of Hydrometeorology, 2020, 21, 317-334.	1.9	2
14	Profiles of MBL Cloud and Drizzle Microphysical Properties Retrieved From Groundâ€Based Observations and Validated by Aircraft In Situ Measurements Over the Azores. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032205.	3.3	26
15	Investigation of aerosol–cloud interactions under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements. Atmospheric Chemistry and Physics, 2020, 20, 3483-3501.	4.9	18
16	Cloud and Precipitation Properties of MCSs Along the Meiyu Frontal Zone in Central and Southern China and Their Associated Large‣cale Environments. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031601.	3.3	20
17	Vertical Distributions of Raindrops and Zâ€R Relationships Using Microrain Radar and 2â€Dâ€Video Distrometer Measurements During the Integrative Monsoon Frontal Rainfall Experiment (IMFRE). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031108.	3.3	16
18	Can the GPM IMERG Final Product Accurately Represent MCSs' Precipitation Characteristics over the Central and Eastern United States?. Journal of Hydrometeorology, 2020, 21, 39-57.	1.9	57

Βαικε Χι

#	Article	IF	CITATIONS
19	Quantifying Longâ€Term Seasonal and Regional Impacts of North American Fire Activity on Continental Boundary Layer Aerosols and Cloud Condensation Nuclei. Earth and Space Science, 2020, 7, e2020EA001113.	2.6	1
20	A Climatology of Marine Boundary Layer Cloud and Drizzle Properties Derived from Ground-Based Observations over the Azores. Journal of Climate, 2020, 33, 10133-10148.	3.2	13
21	Impacts of long-range transport of aerosols on marine-boundary-layer clouds in the eastern North Atlantic. Atmospheric Chemistry and Physics, 2020, 20, 14741-14755.	4.9	21
22	A global record of single-layered ice cloud properties and associated radiative heating rate profiles from an A-Train perspective. Climate Dynamics, 2019, 53, 3069-3088.	3.8	7
23	Estimation of liquid water path below the melting layer in stratiform precipitation systems using radar measurements during MC3E. Atmospheric Measurement Techniques, 2019, 12, 3743-3759.	3.1	5
24	Thicker Clouds and Accelerated Arctic Sea Ice Decline: The Atmosphere‣ea Ice Interactions in Spring. Geophysical Research Letters, 2019, 46, 6980-6989.	4.0	47
25	Understanding Ice Cloudâ€Precipitation Properties of Three Modes of Mesoscale Convective Systems During PECAN. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4121-4140.	3.3	10
26	A Regime-Based Evaluation of Southern and Northern Great Plains Warm-Season Precipitation Events in WRF. Weather and Forecasting, 2019, 34, 805-831.	1.4	15
27	A survey of the atmospheric physical processes key to the onset of Arctic sea ice melt in spring. Climate Dynamics, 2019, 52, 4907-4922.	3.8	13
28	Comparisons of Ice Water Path in Deep Convective Systems Among Groundâ€Based, GOES, and CERESâ€MODIS Retrievals. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1708-1723.	3.3	15
29	Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment. Advances in Atmospheric Sciences, 2018, 35, 224-233.	4.3	14
30	Evaluation of autoconversion and accretion enhancement factors in general circulation model warm-rain parameterizations using ground-based measurements over the Azores. Atmospheric Chemistry and Physics, 2018, 18, 17405-17420.	4.9	21
31	Influence of Wind Direction on Thermodynamic Properties and Arctic Mixedâ€Phase Clouds in Autumn at UtqiaÄįvik, Alaska. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9589-9603.	3.3	6
32	Investigation of Liquid Cloud Microphysical Properties of Deep Convective Systems: 2. Parameterization of Raindrop Size Distribution and its Application for Convective Rain Estimation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,637.	3.3	8
33	Using AIRS and ARM SGP Clear‣ky Observations to Evaluate Meteorological Reanalyses: A Hyperspectral Radiance Closure Approach. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,720.	3.3	3
34	Comparison of Daytime Low‣evel Cloud Properties Derived From GOES and ARM SGP Measurements. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8221-8237.	3.3	6
35	Evaluation of NASA GISS post-CMIP5 single column model simulated clouds and precipitation using ARM Southern Great Plains observations. Advances in Atmospheric Sciences, 2017, 34, 306-320.	4.3	8
36	Intercomparisons of marine boundary layer cloud properties from the ARM CAPâ€MBL campaign and two MODIS cloud products. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2351-2365.	3.3	16

Βαικέ Χι

#	Article	IF	CITATIONS
37	The footprints of 16 year trends of Arctic springtime cloud and radiation properties on September sea ice retreat. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2179-2193.	3.3	20
38	Quantifying the Uncertainties of Reanalyzed Arctic Cloud and Radiation Properties Using Satellite Surface Observations. Journal of Climate, 2017, 30, 8007-8029.	3.2	31
39	Evaluation of Reanalyzed Precipitation Variability and Trends Using the Gridded Gauge-Based Analysis over the CONUS. Journal of Hydrometeorology, 2017, 18, 2227-2248.	1.9	18
40	Effects of environment forcing on marine boundary layer cloudâ€drizzle processes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4463-4478.	3.3	15
41	Comparison of the GPCP 1DD Precipitation Product and NEXRAD Q2 Precipitation Estimates over the Continental United States. Journal of Hydrometeorology, 2016, 17, 1837-1853.	1.9	4
42	A clearâ€sky radiation closure study using a oneâ€dimensional radiative transfer model and collocated satelliteâ€surfaceâ€reanalysis data sets. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,698.	3.3	5
43	Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,820.	3.3	16
44	A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,175-10,198.	3.3	14
45	Investigation of liquid cloud microphysical properties of deep convective systems: 1. Parameterization raindrop size distribution and its application for stratiform rain estimation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,739.	3.3	18
46	Determining the Best Method for Estimating the Observed Level of Maximum Detrainment Based on Radar Reflectivity. Monthly Weather Review, 2016, 144, 2915-2926.	1.4	4
47	A quantitative assessment of precipitation associated with the ITCZ in the CMIP5 GCM simulations. Climate Dynamics, 2016, 47, 1863-1880.	3.8	33
48	Cloud fraction at the ARM SGP site: reducing uncertainty with self-organizing maps. Theoretical and Applied Climatology, 2016, 124, 43-54.	2.8	12
49	Improving Satellite Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth. Journal of Hydrometeorology, 2016, 17, 557-570.	1.9	15
50	Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations. Climate Dynamics, 2016, 46, 2123-2144.	3.8	45
51	Investigation of ice cloud microphysical properties of DCSs using aircraft in situ measurements during MC3E over the ARM SGP site. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3533-3552.	3.3	28
52	Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,313.	3.3	38
53	Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the Azores. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6179-6191.	3.3	37
54	Characterizing Arctic mixedâ€phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7737-7746.	3.3	18

Βαικε Χι

#	Article	IF	CITATIONS
55	Marine boundary layer drizzle properties and their impact on cloud property retrieval. Atmospheric Measurement Techniques, 2015, 8, 3555-3562.	3.1	19
56	Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part II: TOA Radiation Budget and CREs. Journal of Climate, 2015, 28, 1842-1864.	3.2	21
57	Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Climate Dynamics, 2015, 44, 2229-2247.	3.8	91
58	Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties. Journal of Climate, 2014, 27, 4189-4208.	3.2	39
59	Investigation of the Diurnal Variation of Marine Boundary Layer Cloud Microphysical Properties at the Azores. Journal of Climate, 2014, 27, 8827-8835.	3.2	31
60	Assessment of SCaMPR and NEXRAD Q2 Precipitation Estimates Using Oklahoma Mesonet Observations. Journal of Hydrometeorology, 2014, 15, 2484-2500.	1.9	12
61	Cloud fraction at the ARM SGP site. Theoretical and Applied Climatology, 2014, 115, 91-105.	2.8	15
62	A 19-Month Record of Marine Aerosol–Cloud–Radiation Properties Derived from DOE ARM Mobile Facility Deployment at the Azores. Part I: Cloud Fraction and Single-Layered MBL Cloud Properties. Journal of Climate, 2014, 27, 3665-3682.	3.2	56
63	Critical mechanisms for the formation of extreme arctic sea-ice extent in the summers of 2007 and 1996. Climate Dynamics, 2014, 43, 53-70.	3.8	15
64	Comparison of marine boundary layer cloud properties from CERESâ€MODIS Edition 4 and DOE ARM AMF measurements at the Azores. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9509-9529.	3.3	22
65	Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4859-4872.	3.3	43
66	Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,119.	3.3	49
67	A Comparison of the Mineral Dust Absorptive Properties between Two Asian Dust Events. Atmosphere, 2013, 4, 1-16.	2.3	8
68	Evaluation and Intercomparison of Cloud Fraction and Radiative Fluxes in Recent Reanalyses over the Arctic Using BSRN Surface Observations. Journal of Climate, 2012, 25, 2291-2305.	3.2	82
69	Life cycle of midlatitude deep convective systems in a Lagrangian framework. Journal of Geophysical Research, 2012, 117, .	3.3	61
70	CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part II: Examples of Average Results and Comparisons With Other Data. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 4401-4430.	6.3	123
71	Investigation of the 2006 drought and 2007 flood extremes at the Southern Great Plains through an integrative analysis of observations. Journal of Geophysical Research, 2011, 116, .	3.3	64
72	Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56

Βαικέ Χι

#	Article	IF	CITATIONS
73	A Comparison of MERRA and NARR Reanalyses with the DOE ARM SGP Data. Journal of Climate, 2011, 24, 4541-4557.	3.2	124
74	Evaluation of the NASA GISS Single-Column Model Simulated Clouds Using Combined Surface and Satellite Observations. Journal of Climate, 2010, 23, 5175-5192.	3.2	27
75	A 10 year climatology of cloud fraction and vertical distribution derived from both surface and GOES observations over the DOE ARM SPG site. Journal of Geophysical Research, 2010, 115, .	3.3	71
76	A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. Journal of Geophysical Research, 2010, 115, .	3.3	142
77	A study of Asian dust plumes using satellite, surface, and aircraft measurements during the INTEXâ€B field experiment. Journal of Geophysical Research, 2010, 115, .	3.3	27
78	Correction to "A 10 year climatology of cloud fraction and vertical distribution derived from both surface and GOES observations over the DOE ARM SPG site― Journal of Geophysical Research, 2010, 115,	3.3	1
79	A Method to Merge WSR-88D Data with ARM SCP Millimeter Cloud Radar Data by Studying Deep Convective Systems. Journal of Atmospheric and Oceanic Technology, 2009, 26, 958-971.	1.3	11
80	Comparison of CERESâ€MODIS stratus cloud properties with groundâ€based measurements at the DOE ARM Southern Great Plains site. Journal of Geophysical Research, 2008, 113, .	3.3	80
81	Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically thick limit. Journal of Geophysical Research, 2008, 113, .	3.3	14
82	Observational evidence of changes in water vapor, clouds, and radiation at the ARM SGP site. Geophysical Research Letters, 2006, 33, .	4.0	11
83	A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II: Cloud Fraction and Surface Radiative Forcing. Journal of Climate, 2006, 19, 1765-1783.	3.2	104
84	A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility: Part I: Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties. Journal of Climate, 2005, 18, 1391-1410.	3.2	76