
Ophir D Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5389147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature, 2011, 478, 255-259.	13.7	994
2	The branching programme of mouse lung development. Nature, 2008, 453, 745-750.	13.7	701
3	In vitro generation of human pluripotent stem cell derived lung organoids. ELife, 2015, 4, .	2.8	605
4	Secretion of Shh by a Neurovascular Bundle Niche Supports Mesenchymal Stem Cell Homeostasis in the Adult Mouse Incisor. Cell Stem Cell, 2014, 14, 160-173.	5.2	350
5	Sprouty Genes Control Diastema Tooth Development via Bidirectional Antagonism of Epithelial-Mesenchymal FGF Signaling. Developmental Cell, 2006, 11, 181-190.	3.1	260
6	Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature, 2018, 559, 109-113.	13.7	223
7	Sox2+ Stem Cells Contribute to All Epithelial Lineages of the Tooth via Sfrp5+ Progenitors. Developmental Cell, 2012, 23, 317-328.	3.1	203
8	Transcriptome-wide Analysis Reveals Hallmarks of Human Intestine Development and Maturation InÂVitro and InÂVivo. Stem Cell Reports, 2015, 4, 1140-1155.	2.3	201
9	Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development (Cambridge), 2010, 137, 3221-3231.	1.2	197
10	An FAK-YAP-mTOR Signaling Axis Regulates Stem Cell-Based Tissue Renewal in Mice. Cell Stem Cell, 2017, 21, 91-106.e6.	5.2	176
11	Lgr5-Expressing Cells Are Sufficient and Necessary for Postnatal Mammary Gland Organogenesis. Cell Reports, 2013, 3, 70-78.	2.9	175
12	Opposing Activities of Notch and Wnt Signaling Regulate Intestinal Stem Cells and Gut Homeostasis. Cell Reports, 2015, 11, 33-42.	2.9	165
13	Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development (Cambridge), 2010, 137, 3753-3761.	1.2	155
14	An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development (Cambridge), 2008, 135, 377-385.	1.2	150
15	Sox2 marks epithelial competence to generate teeth in mammals and reptiles. Development (Cambridge), 2013, 140, 1424-1432.	1.2	148
16	Assessment of endometrial volume by three-dimensional ultrasound prior to embryo transfer: clues to endometrial receptivity. Human Reproduction, 1999, 14, 2851-2854.	0.4	146
17	Engineered Tissue Folding by Mechanical Compaction of the Mesenchyme. Developmental Cell, 2018, 44, 165-178.e6.	3.1	145
18	Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology. PLoS Genetics, 2016, 12, e1006149.	1.5	140

#	Article	IF	CITATIONS
19	BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nature Cell Biology, 2013, 15, 846-852.	4.6	126
20	Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nature Communications, 2020, 11, 4816.	5.8	126
21	Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development (Cambridge), 2020, 147, .	1.2	125
22	Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration. Nature, 2018, 563, 514-521.	13.7	121
23	A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nature Genetics, 2012, 44, 1360-1364.	9.4	120
24	Developmental disorders of the dentition: An update. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2013, 163, 318-332.	0.7	108
25	Lgr5+Âtelocytes are a signaling source at the intestinal villus tip. Nature Communications, 2020, 11, 1936.	5.8	105
26	Replaying evolutionary transitions from the dental fossil record. Nature, 2014, 512, 44-48.	13.7	102
27	Signaling by FGFR2b controls the regenerative capacity of adult mouse incisors. Development (Cambridge), 2010, 137, 3743-3752.	1.2	88
28	The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation. Development (Cambridge), 2013, 140, 3348-3359.	1.2	88
29	Patterning by heritage in mouse molar row development. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15497-15502.	3.3	84
30	Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey. International Journal of Oral Science, 2013, 5, 121-129.	3.6	84
31	Engineering synthetic morphogen systems that can program multicellular patterning. Science, 2020, 370, 327-331.	6.0	82
32	Genomewide Association Study of African Children Identifies Association of SCHIP1 and PDE8A with Facial Size and Shape. PLoS Genetics, 2016, 12, e1006174.	1.5	81
33	From molecules to mastication: the development and evolution of teeth. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 165-182.	5.9	78
34	Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells. Development (Cambridge), 2014, 141, 2611-2620.	1.2	76
35	Injectable Bone Tissue Engineering Using Expanded Mesenchymal Stem Cells. Stem Cells, 2013, 31, 572-580.	1.4	75
36	Developing and Regenerating a Sense of Taste. Current Topics in Developmental Biology, 2015, 111, 401-419.	1.0	73

#	Article	IF	CITATIONS
37	The FaceBase Consortium: A comprehensive program to facilitate craniofacial research. Developmental Biology, 2011, 355, 175-182.	0.9	72
38	Human Facial Shape and Size Heritability and Genetic Correlations. Genetics, 2017, 205, 967-978.	1.2	70
39	Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia. ELife, 2018, 7, .	2.8	69
40	Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium. Development (Cambridge), 2014, 141, 2993-3002.	1.2	68
41	A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage. Nature Cell Biology, 2019, 21, 1102-1112.	4.6	67
42	Mutations of CXorf6 are associated with a range of severities of hypospadias. European Journal of Endocrinology, 2008, 159, 453-458.	1.9	65
43	Modulation of <i>Fgf3</i> dosage in mouse and men mirrors evolution of mammalian dentition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22364-22368.	3.3	64
44	The FaceBase Consortium: A comprehensive resource for craniofacial researchers. Development (Cambridge), 2016, 143, 2677-88.	1.2	62
45	Genotype–phenotype analysis of the branchioâ€oculoâ€facial syndrome. American Journal of Medical Genetics, Part A, 2011, 155, 22-32.	0.7	61
46	Quantitative Clonal Analysis and Single-Cell Transcriptomics Reveal Division Kinetics, Hierarchy, and Fate of Oral Epithelial Progenitor Cells. Cell Stem Cell, 2019, 24, 183-192.e8.	5.2	61
47	Stem Cell and Biomaterials Research in Dental Tissue Engineering and Regeneration. Dental Clinics of North America, 2012, 56, 495-520.	0.8	59
48	<i>Sox2</i> and <i>Lef-1</i> interact with <i>Pitx2</i> to regulate incisor development and stem cell renewal. Development (Cambridge), 2016, 143, 4115-4126.	1.2	58
49	LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Nature Communications, 2018, 9, 4055.	5.8	58
50	LGR5 in breast cancer and ductal carcinoma in situ: a diagnostic and prognostic biomarker and a therapeutic target. BMC Cancer, 2020, 20, 542.	1.1	58
51	FGF Signaling Regulates the Number of Posterior Taste Papillae by Controlling Progenitor Field Size. PLoS Genetics, 2011, 7, e1002098.	1.5	57
52	On the cutting edge of organ renewal: Identification, regulation, and evolution of incisor stem cells. Genesis, 2014, 52, 79-92.	0.8	57
53	Atoh1 ⁺ secretory progenitors possess renewal capacity independent of Lgr5 ⁺ cells during colonic regeneration. EMBO Journal, 2019, 38, .	3.5	56
54	Fibroblast growth factor signaling in mammalian tooth development. Odontology / the Society of the Nippon Dental University, 2014, 102, 1-13.	0.9	55

#	Article	IF	CITATIONS
55	Enamel-free teeth: Tbx1 deletion affects amelogenesis in rodent incisors. Developmental Biology, 2009, 328, 493-505.	0.9	54
56	Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation. Cell Reports, 2018, 22, 1003-1015.	2.9	54
57	Feedback regulation of RTK signaling in development. Developmental Biology, 2019, 447, 71-89.	0.9	53
58	Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling. Development (Cambridge), 2011, 138, 4063-4073.	1.2	52
59	E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse incisor. Developmental Biology, 2012, 366, 357-366.	0.9	52
60	Role of Glutamine 17 of the Bovine Papillomavirus E5 Protein in Platelet-Derived Growth Factor β Receptor Activation and Cell Transformation. Journal of Virology, 1998, 72, 8921-8932.	1.5	52
61	Fgf8 dosage determines midfacial integration and polarity within the nasal and optic capsules. Developmental Biology, 2013, 374, 185-197.	0.9	50
62	Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1641-E1650.	3.3	49
63	Revitalization of a diastemal tooth primordium in <i>Spry2</i> null mice results from increased proliferation and decreased apoptosis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 292-308.	0.6	48
64	Genomic Variants of <i>ATF3</i> in Patients With Hypospadias. Journal of Urology, 2008, 180, 2183-2188.	0.2	47
65	Promininâ€1 controls stem cell activation by orchestrating ciliary dynamics. EMBO Journal, 2019, 38, .	3.5	47
66	Automated syndrome diagnosis by three-dimensional facial imaging. Genetics in Medicine, 2020, 22, 1682-1693.	1.1	47
67	VIROCRINE TRANSFORMATION: The Intersection Between Viral Transforming Proteins and Cellular Signal Transduction Pathways. Annual Review of Microbiology, 1998, 52, 397-421.	2.9	45
68	Inflation-collapse dynamics drive patterning and morphogenesis in intestinal organoids. Cell Stem Cell, 2021, 28, 1516-1532.e14.	5.2	45
69	Structural models of the bovine papillomavirus E5 protein. , 1998, 33, 601-612.		44
70	αE-catenin inhibits YAP/TAZ activity to regulate signalling centre formation during tooth development. Nature Communications, 2016, 7, 12133.	5.8	44
71	Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis. ELife, 2017, 6, .	2.8	44
72	SPRY1 regulates mammary epithelial morphogenesis by modulating EGFR-dependent stromal paracrine signaling and ECM remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5731-40.	3.3	41

#	Article	lF	CITATIONS
73	Heterogeneity within Stratified Epithelial Stem Cell Populations Maintains the Oral Mucosa in Response to Physiological Stress. Cell Stem Cell, 2019, 25, 814-829.e6.	5.2	40
74	Unraveling the Molecular Mechanisms That Lead to Supernumerary Teeth in Mice and Men: Current Concepts and Novel Approaches. Cells Tissues Organs, 2007, 186, 60-69.	1.3	36
75	PERP regulates enamel formation via effects on cell–cell adhesion and gene expression. Journal of Cell Science, 2011, 124, 745-754.	1.2	36
76	Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Human Molecular Genetics, 2014, 23, 682-692.	1.4	36
77	Migration of Founder Epithelial Cells Drives Proper Molar Tooth Positioning and Morphogenesis. Developmental Cell, 2015, 35, 713-724.	3.1	36
78	<i>DLX4</i> is associated with orofacial clefting and abnormal jaw development. Human Molecular Genetics, 2015, 24, 4340-4352.	1.4	36
79	Intestinal renewal across the animal kingdom: comparing stem cell activity in mouse and <i>Drosophila</i> . American Journal of Physiology - Renal Physiology, 2019, 316, G313-G322.	1.6	36
80	Automatic recognition of the <scp>XLHED</scp> phenotype from facial images. American Journal of Medical Genetics, Part A, 2017, 173, 2408-2414.	0.7	35
81	Bones, Glands, Ears and More: The Multiple Roles of FGF10 in Craniofacial Development. Frontiers in Genetics, 2018, 9, 542.	1.1	34
82	Expression of MicroRNAs in the Stem Cell Niche of the Adult Mouse Incisor. PLoS ONE, 2011, 6, e24536.	1.1	34
83	The Bovine Papillomavirus E5 Protein Requires a Juxtamembrane Negative Charge for Activation of the Platelet-Derived Growth Factor β Receptor and Transformation of C127 Cells. Journal of Virology, 1999, 73, 3264-3272.	1.5	32
84	Sprouty genes regulate proliferation and survival of human embryonic stem cells. Scientific Reports, 2013, 3, 2277.	1.6	31
85	FGF signalling controls the specification of hair placode-derived SOX9 positive progenitors to Merkel cells. Nature Communications, 2018, 9, 2333.	5.8	30
86	microRNA miR-34a Regulates Cytodifferentiation and Targets Multi-signaling Pathways in Human Dental Papilla Cells. PLoS ONE, 2012, 7, e50090.	1.1	30
87	Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. Journal of Neuroscience, 2016, 36, 142-152.	1.7	29
88	Plasticity within the niche ensures the maintenance of a <i>Sox2</i> + stem cell population in the mouse incisor. Development (Cambridge), 2018, 145, .	1.2	28
89	Transit-Amplifying Cells Coordinate Changes in Intestinal Epithelial Cell-Type Composition. Developmental Cell, 2021, 56, 356-365.e9.	3.1	28
90	Coordinated activity of Spry1 and Spry2 is required for normal development of the external genitalia. Developmental Biology, 2014, 386, 1-11.	0.9	27

#	Article	IF	CITATIONS
91	Continuously Growing Rodent Molars Result from a Predictable Quantitative Evolutionary Change over 50 Million Years. Cell Reports, 2015, 11, 673-680.	2.9	27
92	BCL11B Regulates Epithelial Proliferation and Asymmetric Development of the Mouse Mandibular Incisor. PLoS ONE, 2012, 7, e37670.	1.1	27
93	Acute fatal presentation of ornithine transcarbamylase deficiency in a previously healthy male. Hepatology International, 2008, 2, 390-394.	1.9	26
94	Lineage tracing of epithelial cells in developing teeth reveals two strategies for building signaling centers. Journal of Biological Chemistry, 2017, 292, 15062-15069.	1.6	26
95	FaceBase 3: analytical tools and FAIR resources for craniofacial and dental research. Development (Cambridge), 2020, 147, .	1.2	25
96	<i>Shh</i> expression in a rudimentary tooth offers new insights into development of the mouse incisor. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 347-358.	0.6	24
97	An integrated clinical program and crowdsourcing strategy for genomic sequencing and Mendelian disease gene discovery. Npj Genomic Medicine, 2018, 3, 21.	1.7	24
98	Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell, 2020, 26, 632-656.	5.2	24
99	Structural models of the bovine papillomavirus E5 protein. Proteins: Structure, Function and Bioinformatics, 1998, 33, 601-12.	1.5	24
100	Characterization of Dental Epithelial Stem Cells from the Mouse Incisor with Two-Dimensional and Three-Dimensional Platforms. Tissue Engineering - Part C: Methods, 2013, 19, 15-24.	1.1	23
101	Body size and allometric variation in facial shape in children. American Journal of Physical Anthropology, 2018, 165, 327-342.	2.1	23
102	The Interaction of Genetic Background and Mutational Effects in Regulation of Mouse Craniofacial Shape. G3: Genes, Genomes, Genetics, 2017, 7, 1439-1450.	0.8	22
103	Application of full-genome analysis to diagnose rare monogenic disorders. Npj Genomic Medicine, 2021, 6, 77.	1.7	22
104	The Dynamics of Supernumerary Tooth Development Are Differentially Regulated by Sprouty Genes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2013, 320, 307-320.	0.6	21
105	Craniofacial and dental development in Costello syndrome. American Journal of Medical Genetics, Part A, 2014, 164, 1425-1430.	0.7	21
106	Inhibition of Notch Signaling During Mouse Incisor Renewal Leads to Enamel Defects. Journal of Bone and Mineral Research, 2016, 31, 152-162.	3.1	21
107	Isolation and Culture of Dental Epithelial Stem Cells from the Adult Mouse Incisor. Journal of Visualized Experiments, 2014, , .	0.2	20
108	Craniofacial morphometric analysis of individuals with Xâ€linked hypohidrotic ectodermal dysplasia. Molecular Genetics & Genomic Medicine, 2014, 2, 422-429.	0.6	19

#	Article	IF	CITATIONS
109	Fully Automatic Landmarking of Syndromic 3D Facial Surface Scans Using 2D Images. Sensors, 2020, 20, 3171.	2.1	19
110	Temporal analysis of ectopic enamel production in incisors from sprouty mutant mice. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 473-485.	0.6	18
111	Phenotypic and evolutionary implications of modulating the ERK-MAPK cascade using the dentition as a model. Scientific Reports, 2015, 5, 11658.	1.6	18
112	Tissue Mechanical Forces and Evolutionary Developmental Changes Act Through Space and Time to Shape Tooth Morphology and Function. BioEssays, 2018, 40, e1800140.	1.2	18
113	FGF signaling refines Wnt gradients to regulate patterning of taste papillae. Development (Cambridge), 2017, 144, 2212-2221.	1.2	17
114	SOX2 Regulation by hedgehog signaling controls adult lingual epithelium homeostasis. Development (Cambridge), 2018, 145, .	1.2	17
115	Large-scale open-source three-dimensional growth curves for clinical facial assessment and objective description of facial dysmorphism. Scientific Reports, 2021, 11, 12175.	1.6	17
116	Interstitial deletion of chromosome 12q: Genotype-phenotype correlation of two patients utilizing array comparative genomic hybridization. American Journal of Medical Genetics, Part A, 2005, 138A, 349-354.	0.7	16
117	From snapshots to movies: Understanding early tooth development in four dimensions. Developmental Dynamics, 2017, 246, 442-450.	0.8	16
118	Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid. PLoS Genetics, 2017, 13, e1006914.	1.5	16
119	The intestinal epithelial response to damage. Science China Life Sciences, 2018, 61, 1205-1211.	2.3	16
120	Embryonic Versus Adult Stem Cells. , 2015, , 249-262.		15
121	<i>Bmi1+</i> Progenitor Cell Dynamics in Murine Cornea During Homeostasis and Wound Healing. Stem Cells, 2018, 36, 562-573.	1.4	15
122	Use of organoids to study regenerative responses to intestinal damage. American Journal of Physiology - Renal Physiology, 2019, 317, G845-G852.	1.6	15
123	Microbial signals, MyD88, and lymphotoxin drive TNF-independent intestinal epithelial tissue damage. Journal of Clinical Investigation, 2022, 132, .	3.9	15
124	Dact1–3 mRNAs exhibit distinct expression domains during tooth development. Gene Expression Patterns, 2010, 10, 140-143.	0.3	14
125	Characterization of Xâ€linked hypohidrotic ectodermal dysplasia (XLâ€HED) hair and sweat gland phenotypes using phototrichogram analysis and live confocal imaging. American Journal of Medical Genetics, Part A, 2013, 161, 1585-1593.	0.7	14
126	Tooth, hair and claw: Comparing epithelial stem cell niches of ectodermal appendages. Experimental Cell Research, 2014, 325, 96-103.	1.2	14

#	Article	IF	CITATIONS
127	<i>Isl1</i> Controls Patterning and Mineralization of Enamel in the Continuously Renewing Mouse Incisor. Journal of Bone and Mineral Research, 2017, 32, 2219-2231.	3.1	14
128	FAM20B-catalyzed glycosaminoglycans control murine tooth number by restricting FGFR2b signaling. BMC Biology, 2020, 18, 87.	1.7	13
129	Expression of FGFs during early mouse tongue development. Gene Expression Patterns, 2016, 20, 81-87.	0.3	12
130	Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development. Development (Cambridge), 2021, 148, .	1.2	12
131	Good Neighbors: The Niche that Fine Tunes Mammalian Intestinal Regeneration. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040865.	2.3	12
132	Case report: Y;6 translocation with deletion of 6p. Clinical Dysmorphology, 2005, 14, 93-96.	0.1	11
133	EPHRIN-B1 Mosaicism Drives Cell Segregation in Craniofrontonasal Syndrome hiPSC-Derived Neuroepithelial Cells. Stem Cell Reports, 2017, 8, 529-537.	2.3	11
134	From gut to glutes: The critical role of niche signals in the maintenance and renewal of adult stem cells. Current Opinion in Cell Biology, 2020, 63, 88-101.	2.6	11
135	Identification of novel <i>Fgf</i> enhancers and their role in dental evolution. Evolution & Development, 2016, 18, 31-40.	1.1	10
136	Sonic Hedgehog Signaling Is Required for Cyp26 Expression during Embryonic Development. International Journal of Molecular Sciences, 2019, 20, 2275.	1.8	10
137	KrasP34R and KrasT58I mutations induce distinct RASopathy phenotypes in mice. JCI Insight, 2020, 5, .	2.3	10
138	Clefting in Trisomy 9p Patients. Journal of Craniofacial Surgery, 2010, 21, 1376-1379.	0.3	9
139	From Bench to Bedside and Back. Current Topics in Developmental Biology, 2015, 115, 459-492.	1.0	9
140	Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling. Bone, 2016, 88, 170-179.	1.4	9
141	MEK-inhibitor-mediated rescue of skeletal myopathy caused by activating Hras mutation in a Costello syndrome mouse model. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	9
142	SRSF1 governs progenitor-specific alternative splicing to maintain adult epithelial tissue homeostasis and renewal. Developmental Cell, 2022, 57, 624-637.e4.	3.1	9
143	Modeling craniofacial and skeletal congenital birth defects to advance therapies. Human Molecular Genetics, 2016, 25, R86-R93.	1.4	7
144	Inductive Ability of Human Developing and Differentiated Dental Mesenchyme. Cells Tissues Organs, 2013, 198, 99-110.	1.3	6

#	Article	IF	CITATIONS
145	Spontaneous emergence of overgrown molar teeth in a colony of Prairie voles (Microtus) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf 50
146	Hyperplasia of Interstitial Cells of Cajal in Sprouty Homolog 4 Deficient Mice. PLoS ONE, 2015, 10, e0124861.	1.1	6
147	Case report: Y;6 translocation with deletion of 6p. Clinical Dysmorphology, 2005, 14, 93-96.	0.1	6
148	LGL1 binds to Integrin \hat{I}^21 and inhibits downstream signaling to promote epithelial branching in the mammary gland. Cell Reports, 2022, 38, 110375.	2.9	6
149	Current trends in stem cell therapy for improvement of bone quality. Histology and Histopathology, 2014, 29, 691-7.	0.5	5
150	Developing Physician-Scientists in the Fields of Neonatology and Pediatric Critical Care Medicine: An Effort to Formulate a Departmental Policy. Journal of Pediatrics, 2013, 163, 616-617.e1.	0.9	4
151	If a Stem Cell Dies in the Crypt, and No One Is Around to See It…. Cell Stem Cell, 2013, 12, 389-390.	5.2	4
152	Watching a deep dive: Live imaging provides lessons about tooth invagination. Journal of Cell Biology, 2016, 214, 645-647.	2.3	4
153	Dental, Oral, and Craniofacial Regenerative Medicine: Transforming Biotechnologies for Innovating Patient Care. Journal of Dental Research, 2018, 97, 361-363.	2.5	4
154	Downregulation of FGF Signaling by <i>Spry4</i> Overexpression Leads to Shape Impairment, Enamel Irregularities, and Delayed Signaling Center Formation in the Mouse Molar. JBMR Plus, 2019, 3, e10205.	1.3	4
155	Asymmetric Stratification-Induced Polarity Loss and Coordinated Individual Cell Movements Drive Directional Migration of Vertebrate Epithelium. Cell Reports, 2020, 33, 108246.	2.9	4
156	Parallels in signaling between development and regeneration in ectodermal organs. Current Topics in Developmental Biology, 2022, , 373-419.	1.0	4
157	Brachydactylic multiple delta phalanges plus syndrome. American Journal of Medical Genetics, Part A, 2005, 138A, 41-44.	0.7	3
158	Case Report of Floating-Harbor Syndrome With Bilateral Cleft Lip. Cleft Palate-Craniofacial Journal, 2020, 57, 132-136.	0.5	3
159	CNPY4 inhibits the Hedgehog pathway by modulating membrane sterol lipids. Nature Communications, 2022, 13, 2407.	5.8	3
160	MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses. Scientific Data, 2022, 9, .	2.4	3
161	Generation of Knockout Gene-Edited Human Intestinal Organoids. Methods in Molecular Biology, 2020, 2171, 215-230.	0.4	2
162	Salivary gland: A budding genius. Developmental Cell, 2021, 56, 2271-2272.	3.1	1

#	Article	IF	CITATIONS
163	Summary of the IADR Cariology Research, Craniofacial Biology, and Mineralized Tissue Groups Symposium, Igua§u Falls, Brazil, June 2012: Gene-environment Interactions and Epigenetics in Oral Diseases: Enamel Formation and its Clinical Impact on Tooth Defects, Caries, and Erosion. Dentistry 3000, 2013, 1, 19-24.	0.1	1
164	The society of craniofacial genetics and developmental biology 35th annual meeting. American Journal of Medical Genetics, Part A, 2013, 161, 2938-2952.	0.7	0
165	Introduction to themed series on intestinal stem cells and the NIDDK Intestinal Stem Cell Consortium. American Journal of Physiology - Renal Physiology, 2019, 316, G247-G250.	1.6	0
166	The UCSF Mouse Inventory Database Application, an Open Source Web App for Sharing Mutant Mice Within a Research Community. G3: Genes, Genomes, Genetics, 2020, 10, 1503-1510.	0.8	0
167	Congenital Müllerian anomalies: a review of currently available imaging modalities. Ultrasound Review of Obstetrics and Gynecology, 2002, 2, 56-67.	0.2	0
168	Adult Stem Cells in Teeth. Pancreatic Islet Biology, 2014, , 199-216.	0.1	0
169	The Pitx2:miRâ€⊉00 Family Axis Regulates WNT and BMP Signaling During Tooth Morphogenesis and Renewal. FASEB Journal, 2013, 27, 193.1.	0.2	0
170	Inbred Background Effects On Craniofacial Shape Dysmorphology In Mice With Spry Deletions. FASEB Journal, 2015, 29, 697.2.	0.2	0
171	Congenital Müllerian anomalies: a review of currently available imaging modalities. Ultrasound Review of Obstetrics and Gynecology, 2002, 2, 56-67.	0.2	Ο