
Tatsuya Ogura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5388931/publications.pdf Version: 2024-02-01

ΤΑΤΩΙΙΧΑ ΟΩΠΡΑ

#	Article	IF	CITATIONS
1	Modification of the Peripheral Olfactory System by Electronic Cigarettes. , 2021, 11, 2621-2644.		2
2	TRPM5-expressing Microvillous Cells Regulate Region-specific Cell Proliferation and Apoptosis During Chemical Exposure. Neuroscience, 2020, 434, 171-190.	2.3	8
3	Electronic Cigarette Liquid Constituents Induce Nasal and Tracheal Sensory Irritation in Mice in Regionally Dependent Fashion. Nicotine and Tobacco Research, 2020, 22, S35-S44.	2.6	6
4	Chemical Exposure-Induced Changes in the Expression of Neurotrophins and Their Receptors in the Main Olfactory System of Mice Lacking TRPM5-Expressing Microvillous Cells. International Journal of Molecular Sciences, 2018, 19, 2939.	4.1	5
5	ATP and Odor Mixture Activate TRPM5-Expressing Microvillous Cells and Potentially Induce Acetylcholine Release to Enhance Supporting Cell Endocytosis in Mouse Main Olfactory Epithelium. Frontiers in Cellular Neuroscience, 2018, 12, 71.	3.7	25
6	Dichotomous Distribution of Putative Cholinergic Interneurons in Mouse Accessory Olfactory Bulb. Frontiers in Neuroanatomy, 2017, 11, 10.	1.7	4
7	Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment. ENeuro, 2017, 4, ENEURO.0135-17.2017.	1.9	28
8	Increases in intracellular calcium via activation of potentially multiple phospholipase C isozymes in mouse olfactory neurons. Frontiers in Cellular Neuroscience, 2014, 8, 336.	3.7	9
9	Skn-1a/Pou2f3 is required for the generation of Trpm5-expressing microvillous cells in the mouse main olfactory epithelium. BMC Neuroscience, 2014, 15, 13.	1.9	67
10	Regulation of Vomeronasal Stimulus Access by Cholinergic Solitary Chemosensory Cells in Mice. Autonomic Neuroscience: Basic and Clinical, 2013, 177, 31-32.	2.8	0
11	Microvillous cell-mediated cholinergic regulation of physiological responses in mouse main olfactory epithelium. Autonomic Neuroscience: Basic and Clinical, 2013, 177, 300-301.	2.8	0
12	An Effective Manual Deboning Method To Prepare Intact Mouse Nasal Tissue With Preserved Anatomical Organization. Journal of Visualized Experiments, 2013, , .	0.3	26
13	Automated measurement of nerve fiber density using line intensity scan analysis. Journal of Neuroscience Methods, 2012, 206, 165-175.	2.5	44
14	Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. Journal of Neurophysiology, 2011, 106, 1274-1287.	1.8	69
15	Chemoreception Regulates Chemical Access to Mouse Vomeronasal Organ: Role of Solitary Chemosensory Cells. PLoS ONE, 2010, 5, e11924.	2.5	78
16	Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish: Cellular organization and neurotransmitters. Journal of Comparative Neurology, 2009, 516, 213-225.	1.6	15
17	TRPM5-Expressing Solitary Chemosensory Cells Respond to Odorous Irritants. Journal of Neurophysiology, 2008, 99, 1451-1460.	1.8	129
18	Immuno-localization of vesicular acetylcholine transporter in mouse taste cells and adjacent nerve fibers: indication of acetylcholine release. Cell and Tissue Research, 2007, 330, 17-28.	2.9	30

TATSUYA OGURA

#	Article	IF	CITATIONS
19	Downstream Signaling Effectors for Umami Taste. Chemical Senses, 2005, 30, i31-i32.	2.0	1
20	Acetylcholine and Acetylcholine Receptors in Taste Receptor Cells. Chemical Senses, 2005, 30, i41-i41.	2.0	15
21	Expression of P2Y 1 receptors in rat taste buds. Histochemistry and Cell Biology, 2004, 121, 419-426.	1.7	54
22	Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium, 2003, 33, 541-549.	2.4	83
23	Responses to Di-Sodium Guanosine 5′-Monophosphate and Monosodiuml-Glutamate in Taste Receptor Cells of Rat Fungiform Papillae. Journal of Neurophysiology, 2003, 89, 1434-1439.	1.8	26
24	Taste Receptor Cell Responses to the Bitter Stimulus Denatonium Involve Ca ²⁺ Influx Via Store-Operated Channels. Journal of Neurophysiology, 2002, 87, 3152-3155.	1.8	66
25	Acetylcholine Increases Intracellular Ca2+ in Taste Cells Via Activation of Muscarinic Receptors. Journal of Neurophysiology, 2002, 87, 2643-2649.	1.8	68
26	Acid-Activated Cation Currents in Rat Vallate Taste Receptor Cells. Journal of Neurophysiology, 2002, 88, 133-141.	1.8	101
27	IP3-Independent Release of Ca2+ From Intracellular Stores: A Novel Mechanism for Transduction of Bitter Stimuli. Journal of Neurophysiology, 1999, 82, 2657-2666.	1.8	29
28	Bitter Taste Transduction of Denatonium in the Mudpuppy <i>Necturus maculosus</i> . Journal of Neuroscience, 1997, 17, 3580-3587.	3.6	67
29	Chloride current observed as calcium-gated tail current in trigeminal root ganglion neurons of the marine catfish, Plotosus. Brain Research, 1993, 621, 10-16.	2.2	1
30	The membrane properties and Ca-currents of the trigeminal root ganglion cells in primary culture of the marine catfish, Plotosus, studied with whole-cell recordings. Brain Research, 1992, 597, 84-91.	2.2	1
31	Potential-dependent action ofAnemonia sulcata toxins III and IV on sodium channels in crayfish giant axons. Pflugers Archiv European Journal of Physiology, 1988, 411, 88-93.	2.8	13
32	Effects of histrionicotoxin derivatives on ion channels and acetylcholine receptor-channel complexes in bullfrog sympathetic ganglia. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1987, 88, 249-254.	0.2	5
33	Respiratory inhibition by cyanide and salicylhydroxamic acid on the three species of Paramecium in stationary growth phase. Comparative Biochemistry and Physiology A, Comparative Physiology, 1985, 80, 167-171.	0.6	3