Xuemin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5387732/publications.pdf

Version: 2024-02-01

14655 16183 16,759 176 66 124 citations h-index g-index papers 180 180 180 10826 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cadmium-induced changes in composition and co-metabolism of glycerolipids species in wheat root: Glycerolipidomic and transcriptomic approach. Journal of Hazardous Materials, 2022, 423, 127115.	12.4	8
2	Phospholipase Dε interacts with autophagyâ€related protein 8 and promotes autophagy in Arabidopsis response to nitrogen deficiency. Plant Journal, 2022, 109, 1519-1534.	5.7	6
3	The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Progress in Lipid Research, 2022, 86, 101158.	11.6	52
4	Specific Changes in Arabidopsis thaliana Rosette Lipids during Freezing Can Be Associated with Freezing Tolerance. Metabolites, 2022, 12, 385.	2.9	1
5	Effects of Phospholipase Dε Overexpression on Soybean Response to Nitrogen and Nodulation. Frontiers in Plant Science, 2022, 13, .	3.6	4
6	Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Molecular Plant, 2021, 14, 470-487.	8.3	107
7	Lipids Phospholipase A in Animals and Plants. , 2021, , 744-757.		0
8	Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency. Plant Cell, 2021, 33, 766-780.	6.6	31
9	Phospholipase D†and phosphatidic acidâ€mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (<i>Glycine max</i>). Plant Journal, 2021, 106, 142-158.	5.7	13
10	Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina. Biotechnology for Biofuels, 2021, 14, 49.	6.2	13
11	Acylation of nonâ€specific phospholipase C4 determines its function in plant response to phosphate deficiency. Plant Journal, 2021, 106, 1647-1659.	5.7	13
12	BnTIR: an online transcriptome platform for exploring RNAâ€seq libraries for oil crop <i>Brassica napus</i> . Plant Biotechnology Journal, 2021, 19, 1895-1897.	8.3	68
13	Phospholipase Dα6 and phosphatidic acid regulate gibberellin signaling in rice. EMBO Reports, 2021, 22, e51871.	4.5	8
14	Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (<i>Glycine max</i>). Plant Biotechnology Journal, 2020, 18, 155-171.	8.3	52
15	Leaf Lipid Alterations in Response to Heat Stress of Arabidopsis thaliana. Plants, 2020, 9, 845.	3 . 5	36
16	Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress. Nature Communications, 2020, 11, 3439.	12.8	48
17	Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. Plant Journal, 2020, 103, 1351-1371.	5.7	28
18	Molybdenum induces alterations in the glycerolipidome that confer drought tolerance in wheat. Journal of Experimental Botany, 2020, 71, 5074-5086.	4.8	15

#	Article	IF	CITATIONS
19	Nonspecific phospholipase C6 increases seed oil production in oilseed Brassicaceae plants. New Phytologist, 2020, 226, 1055-1073.	7.3	22
20	Transcriptional Regulation of Lipid Catabolism during Seedling Establishment. Molecular Plant, 2020, 13, 984-1000.	8.3	32
21	Phosphatidic acid: an emerging versatile class of cellular mediators. Essays in Biochemistry, 2020, 64, 533-546.	4.7	53
22	Patatin-Related Phospholipase pPLAIIIÎ ³ Involved in Osmotic and Salt Tolerance in Arabidopsis. Plants, 2020, 9, 650.	3.5	9
23	Phospholipase D and phosphatidic acid in plant immunity. Plant Science, 2019, 279, 45-50.	3.6	57
24	Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nature Plants, 2019, 5, 1012-1021.	9.3	73
25	PLDÎ ± 1 -knockdown soybean seeds display higher unsaturated glycerolipid contents and seed vigor in high temperature and humidity environments. Biotechnology for Biofuels, 2019, 12, 9.	6.2	28
26	Interaction and Regulation Between Lipid Mediator Phosphatidic Acid and Circadian Clock Regulators. Plant Cell, 2019, 31, 399-416.	6.6	39
27	Diacylglycerol kinase and associated lipid mediators modulate rice root architecture. New Phytologist, 2019, 223, 261-276.	7.3	23
28	Rice sulfoquinovosyltransferase SQD2.1 mediates flavonoid glycosylation and enhances tolerance to osmotic stress. Plant, Cell and Environment, 2019, 42, 2215-2230.	5.7	40
29	Dual Activities of Plant cGMP-Dependent Protein Kinase and Its Roles in Gibberellin Signaling and Salt Stress. Plant Cell, 2019, 31, 3073-3091.	6.6	38
30	Phosphatidylinositolâ€hydrolyzing phospholipase C4 modulates rice response to salt and drought. Plant, Cell and Environment, 2019, 42, 536-548.	5.7	46
31	Arabidopsis phospholipase $D\hat{l}\pm 1$ and $D\hat{l}$ oppositely modulate EDS1- and SA-independent basal resistance against adapted powdery mildew. Journal of Experimental Botany, 2018, 69, 3675-3688.	4.8	23
32	Cytidinediphosphateâ€diacylglycerol synthase 5 is required for phospholipid homeostasis and is negatively involved in hyperosmotic stress tolerance. Plant Journal, 2018, 94, 1038-1050.	5.7	16
33	Different effects of phospholipase Dζ2 and nonâ€specific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency. Plant Journal, 2018, 94, 315-326.	5.7	52
34	Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses. Molecular Plant, 2018, 11, 1328-1343.	8.3	87
35	Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol. Plant Physiology, 2017, 174, 110-123.	4.8	52
36	Lipidomics in food science. Current Opinion in Food Science, 2017, 16, 80-87.	8.0	46

3

#	Article	IF	Citations
37	Phospholipase Dδnegatively regulates plant thermotolerance by destabilizing cortical microtubules in <i>Arabidopsis</i> . Plant, Cell and Environment, 2017, 40, 2220-2235.	5.7	45
38	The Sulfoquinovosyltransferase-like Enzyme SQD2.2 is Involved in Flavonoid Glycosylation, Regulating Sugar Metabolism and Seed Setting in Rice. Scientific Reports, 2017, 7, 4685.	3.3	28
39	Nonâ€specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. Plant Journal, 2016, 86, 308-321.	5.7	20
40	Phospholipase Dε enhances <i>Braasca napus</i> growth and seed production in response to nitrogen availability. Plant Biotechnology Journal, 2016, 14, 926-937.	8.3	35
41	Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 639-649.	2.4	44
42	Membrane glycerolipidome of soybean root hairs and its response to nitrogen and phosphate availability. Scientific Reports, 2016, 6, 36172.	3.3	16
43	Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research, 2016, 62, 55-74.	11.6	288
44	Extraction and Profiling of Plant Polar Glycerol Lipids. Bio-protocol, 2016, 6, .	0.4	3
45	Positional Analysis of Fatty Acids in Phospholipids by PLA2 Treatment. Bio-protocol, 2016, 6, .	0.4	1
46	Overexpression of patatinâ€related phospholipase <scp>AllI</scp> δaltered plant growth and increased seed oil content in camelina. Plant Biotechnology Journal, 2015, 13, 766-778.	8.3	47
47	Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice. Journal of Experimental Botany, 2015, 66, 6945-6955.	4.8	37
48	Transcriptomic basis of functional difference and coordination between seeds and the silique wall of Brassica napus during the seed-filling stage. Plant Science, 2015, 233, 186-199.	3.6	9
49	Role of Aminoalcoholphosphotransferases 1 and 2 in Phospholipid Homeostasis in Arabidopsis. Plant Cell, 2015, 27, 1512-1528.	6.6	52
50	Modifications of membrane lipids in response to wounding of <i>Arabidopsis thaliana</i> leaves. Plant Signaling and Behavior, 2015, 10, e1056422.	2.4	20
51	Proteomic insight into reduced cell elongation resulting from overexpression of patatin-related phospholipase pPLAIIIÎ inArabidopsis thaliana. Plant Signaling and Behavior, 2014, 9, e28519.	2.4	7
52	Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. BMC Plant Biology, 2014, 14, 332.	3.6	22
53	Nuclear translocation of proteins and the effect of phosphatidic acid. Plant Signaling and Behavior, 2014, 9, e977711.	2.4	8
54	Overexpression of patatin-related phospholipase Alll $\tilde{A}\check{Z}\hat{A}^2$ altered the content and composition of sphingolipids in Arabidopsis. Frontiers in Plant Science, 2014, 5, 553.	3.6	3

#	Article	IF	CITATIONS
55	Quantitative profiling and pattern analysis of triacylglycerol species in Arabidopsis seeds by electrospray ionization mass spectrometry. Plant Journal, 2014, 77, 160-172.	5.7	59
56	THF1 mutations lead to increased basal and woundâ€induced levels of oxylipins that stimulate anthocyanin biosynthesis via COI1 signaling in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2014, 56, 916-927.	8.5	19
57	Nonâ€specific phospholipase <scp>C</scp> 5 and diacylglycerol promote lateral root development under mild salt stress in <scp>A</scp> rabidopsis. Plant, Cell and Environment, 2014, 37, 2002-2013.	5.7	69
58	Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in $\langle i \rangle$ Arabidopsis $\langle i \rangle$ Â. Plant Cell, 2014, 25, 5030-5042.	6.6	80
59	Lipid changes after leaf wounding in <i>Arabidopsis thaliana</i> : expanded lipidomic data form the basis for lipid coâ€occurrence analysis. Plant Journal, 2014, 80, 728-743.	5.7	90
60	Cytosolic Phosphorylating Glyceraldehyde-3-Phosphate Dehydrogenases Affect <i>Arabidopsis</i> Cellular Metabolism and Promote Seed Oil Accumulation. Plant Cell, 2014, 26, 3023-3035.	6.6	80
61	PLD: Phospholipase Ds in Plant Signaling. Signaling and Communication in Plants, 2014, , 3-26.	0.7	22
62	Comprehensive Quantification of Triacylglycerols in Soybean Seeds by Electrospray Ionization Mass Spectrometry with Multiple Neutral Loss Scans. Scientific Reports, 2014, 4, 6581.	3.3	38
63	Phosphatidic Acid as Lipid Messenger and Growth Regulators in Plants. Signaling and Communication in Plants, 2014, , 69-92.	0.7	11
64	pPLA: Patatin-Related Phospholipase As with Multiple Biological Functions. Signaling and Communication in Plants, 2014, , 93-108.	0.7	9
65	Identification of Heat Responsive Genes in Brassica napus Siliques at the Seed-Filling Stage through Transcriptional Profiling. PLoS ONE, 2014, 9, e101914.	2.5	49
66	Differential changes in galactolipid and phospholipid species in soybean leaves and roots under nitrogen deficiency and after nodulation. Phytochemistry, 2013, 96, 81-91.	2.9	37
67	Patterns and Timing in Expression of Early Auxin-Induced Genes Imply Involvement of Phospholipases A (pPLAs) in the Regulation of Auxin Responses. Molecular Plant, 2013, 6, 1473-1486.	8.3	38
68	Increased expression of phospholipase $\langle scp \rangle D \langle scp \rangle \hat{l}\pm 1$ in guard cells decreases water loss with improved seed production under drought in $\langle i \rangle \langle scp \rangle B \langle scp \rangle $ rassica napus $\langle i \rangle$. Plant Biotechnology Journal, 2013, 11, 380-389.	8.3	65
69	Arabidopsis phospholipase DÎ 21 modulates defense responses to bacterial and fungal pathogens. New Phytologist, 2013, 199, 228-240.	7.3	100
70	Assaying Different Types of Plant Phospholipase D Activities In Vitro. Methods in Molecular Biology, 2013, 1009, 205-217.	0.9	5
71	Phosphatidic Acid-Mediated Signaling. Advances in Experimental Medicine and Biology, 2013, 991, 159-176.	1.6	82
72	Phosphatidic Acid Binds to Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase and Promotes Its Cleavage in Arabidopsis. Journal of Biological Chemistry, 2013, 288, 11834-11844.	3.4	65

#	Article	IF	CITATIONS
73	Patatin-Related Phospholipase pPLAIIIδIncreases Seed Oil Content with Long-Chain Fatty Acids in Arabidopsis Â. Plant Physiology, 2013, 162, 39-51.	4.8	52
74	Lipid signaling in plants. Frontiers in Plant Science, 2013, 4, 216.	3.6	30
75	Biochemical Analysis of the Interaction Between Phospholipase Dα1 and GTP-Binding Protein α-Subunit from Arabidopsis thaliana. Methods in Molecular Biology, 2013, 1043, 21-35.	0.9	11
76	Direct Infusion Mass Spectrometry of Oxylipin-Containing Arabidopsis Membrane Lipids Reveals Varied Patterns in Different Stress Responses Â. Plant Physiology, 2012, 158, 324-339.	4.8	81
77	The Patatin-Containing Phospholipase A pPLAIIÎ \pm Modulates Oxylipin Formation and Water Loss in Arabidopsis thaliana. Molecular Plant, 2012, 5, 452-460.	8.3	68
78	Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with Phospholipase Dδ to Transduce Hydrogen Peroxide Signals in the <i>Arabidopsis</i> Response to Stress. Plant Cell, 2012, 24, 2200-2212.	6.6	202
79	Plant Phospholipases: An Overview. Methods in Molecular Biology, 2012, 861, 123-137.	0.9	74
80	Translate Plant Metabolism into Modern Agriculture: A Starting Point. Molecular Plant, 2012, 5, 291-293.	8.3	2
81	Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle. Frontiers in Plant Science, 2012, 3, 49.	3.6	46
82	Crosstalk between Phospholipase D and Sphingosine Kinase in Plant Stress Signaling. Frontiers in Plant Science, 2012, 3, 51.	3.6	55
83	Connections between Sphingosine Kinase and Phospholipase D in the Abscisic Acid Signaling Pathway in Arabidopsis. Journal of Biological Chemistry, 2012, 287, 8286-8296.	3.4	99
84	An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant Journal, 2012, 71, 161-172.	5.7	198
85	Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastidâ€localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation. Plant Journal, 2011, 66, 781-795.	5 . 7	114
86	Patatin-Related Phospholipase pPLAIIIÎ 2 -Induced Changes in Lipid Metabolism Alter Cellulose Content and Cell Elongation in $\langle i \rangle$ Arabidopsis $\langle i \rangle$ Â Â. Plant Cell, 2011, 23, 1107-1123.	6.6	94
87	Phosphatidic Acid Binds and Stimulates Arabidopsis Sphingosine Kinases. Journal of Biological Chemistry, 2011, 286, 13336-13345.	3.4	109
88	Suppression of Phospholipase $D\hat{l}^3$ s Confers Increased Aluminum Resistance in Arabidopsis thaliana. PLoS ONE, 2011, 6, e28086.	2.5	45
89	Isolation and characterization of GoDREB encoding an ERF-type protein in forage legume Galegae orientalis. Genes and Genetic Systems, 2010, 85, 157-166.	0.7	5
90	Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant, Cell and Environment, 2010, 33, 627-635.	5.7	168

#	Article	IF	Citations
91	Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nature Protocols, 2010, 5, 986-992.	12.0	792
92	Nonspecific Phospholipase C NPC4 Promotes Responses to Abscisic Acid and Tolerance to Hyperosmotic Stress in <i>Arabidopsis </i> A: Plant Cell, 2010, 22, 2642-2659.	6.6	150
93	Plant Phospholipase D. Plant Cell Monographs, 2010, , 39-62.	0.4	14
94	Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends in Plant Science, 2010, 15, 693-700.	8.8	145
95	Phospholipase Dα1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in <i>Arabidopsis</i> AÂÂA. Plant Cell, 2009, 21, 2357-2377.	6.6	517
96	Phospholipase DÎ μ and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant Journal, 2009, 58, 376-387.	5.7	160
97	Profiling of plant hormones by mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2806-2813.	2.3	81
98	Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 927-935.	2.4	229
99	Isolation and characterization of GoRAV, a novel gene encoding a RAV-type protein in Galegae orientalis. Genes and Genetic Systems, 2009, 84, 101-109.	0.7	14
100	Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry, 2008, 69, 1773-1781.	2.9	262
101	Phospholipase Dα3 Is Involved in the Hyperosmotic Response in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 803-816.	6.6	162
102	Differential Degradation of Extraplastidic and Plastidic Lipids during Freezing and Post-freezing Recovery in Arabidopsis thaliana. Journal of Biological Chemistry, 2008, 283, 461-468.	3.4	139
103	Dual Functions of Phospholipase Dî ± 1 in Plant Response to Drought. Molecular Plant, 2008, 1, 262-269.	8.3	93
104	The effect of phospholipase $D\hat{l}\pm 3$ in Arabidopsis response to hyperosmotic stress and glucose. Plant Signaling and Behavior, 2008, 3, 1099-1100.	2.4	17
105	AtPLAI Is an Acyl Hydrolase Involved in Basal Jasmonic Acid Production and Arabidopsis Resistance to Botrytis cinerea. Journal of Biological Chemistry, 2007, 282, 18116-18128.	3.4	123
106	Rapid characterization of the fatty acyl composition of complex lipids by collision-induced dissociation time-of-flight mass spectrometry. Journal of Lipid Research, 2007, 48, 235-241.	4.2	23
107	Phospholipid Signaling In Plant Response To Drought And Salt Stress. , 2007, , 183-192.		8
108	Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant Journal, 2007, 50, 950-957.	5.7	109

7

#	Article	IF	CITATIONS
109	Lipidomics: ESI-MS/MS-Based Profiling to Determine the Function of Genes Involved in Metabolism of Complex Lipids. , 2007, , 87-92.		2
110	Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Frontiers in Bioscience - Landmark, 2007, 12, 2494.	3.0	140
111	Using Unnatural Protein Fusions to Engineer Resveratrol Biosynthesis in Yeast and Mammalian Cells. Journal of the American Chemical Society, 2006, 128, 13030-13031.	13.7	179
112	A Bifurcating Pathway Directs Abscisic Acid Effects on Stomatal Closure and Opening in Arabidopsis. Science, 2006, 312, 264-266.	12.6	375
113	Expression and characterization of Arabidopsis phospholipase $D\hat{l}^32$. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1450-1458.	2.4	19
114	Suppression of phospholipase $D\hat{l}\pm 1$ induces freezing tolerance in Arabidopsis: Response of cold-responsive genes and osmolyte accumulation. Journal of Plant Physiology, 2006, 163, 916-926.	3.5	60
115	Signaling functions of phosphatidic acid. Progress in Lipid Research, 2006, 45, 250-278.	11.6	647
116	Phospholipid-Derived Signaling in Plant Response to Temperature and Water Stresses., 2006, 27, 57-66.		3
117	Profiling lipid changes in plant response to low temperatures. Physiologia Plantarum, 2006, 126, 90-96.	5.2	147
118	Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE D $\hat{1}\pm1$ knockout mutant. Phytochemistry, 2006, 67, 1907-1924.	2.9	270
119	Double Knockouts of Phospholipases Dζ1 and Dζ2 in Arabidopsis Affect Root Elongation during Phosphate-Limited Growth But Do Not Affect Root Hair Patterning. Plant Physiology, 2006, 140, 761-770.	4.8	193
120	Quantitative Profiling of Arabidopsis Polar Glycerolipids in Response to Phosphorus Starvation. Roles of Phospholipases $D\hat{q}1$ and $D\hat{q}2$ in Phosphatidylcholine Hydrolysis and Digalactosyldiacylglycerol Accumulation in Phosphorus-Starved Plants. Plant Physiology, 2006, 142, 750-761.	4.8	226
121	Regulatory Functions of Phospholipase D and Phosphatidic Acid in Plant Growth, Development, and Stress Responses. Plant Physiology, 2005, 139, 566-573.	4.8	302
122	Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1736, 1-9.	2.4	38
123	High-Throughput Lipid Profiling to Identify and Characterize Genes Involved in Lipid Metabolism, Signaling, and Stress Response., 2005,, 307-322.		1
124	Evidence for and Characterization of Ca2+ Binding to the Catalytic Region of Arabidopsis thaliana Phospholipase $D\hat{l}^2$. Journal of Biological Chemistry, 2004, 279, 47833-47839.	3.4	30
125	Arabidopsis Phospholipase $D\hat{l}\pm 1$ Interacts with the Heterotrimeric G-protein $\hat{l}\pm$ -Subunit through a Motif Analogous to the DRY Motif in G-protein-coupled Receptors. Journal of Biological Chemistry, 2004, 279, 1794-1800.	3.4	172
126	Phospholipase DÂ1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9508-9513.	7.1	476

#	Article	IF	Citations
127	The plasma membrane–bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnology, 2004, 22, 427-433.	17.5	310
128	Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Current Opinion in Plant Biology, 2004, 7, 337-344.	7.1	197
129	Lipid signaling. Current Opinion in Plant Biology, 2004, 7, 329-336.	7.1	366
130	Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Analytical Biochemistry, 2003, 314, 149-152.	2.4	126
131	Evolutionary conservation of physical and functional interactions between phospholipase D and actin. Archives of Biochemistry and Biophysics, 2003, 412, 231-241.	3.0	68
132	The Oleate-Stimulated Phospholipase D, PLDÂ, and Phosphatidic Acid Decrease H2O2-Induced Cell Death in Arabidopsis. Plant Cell, 2003, 15, 2285-2295.	6.6	251
133	Rice Phospholipase D Isoforms Show Differential Cellular Location and Gene Induction. Plant and Cell Physiology, 2003, 44, 1013-1026.	3.1	37
134	Two Novel Types of Arabidopsis Phospholipase D. , 2003, , 259-262.		0
135	Profiling Membrane Lipids in Plant Stress Responses. Journal of Biological Chemistry, 2002, 277, 31994-32002.	3.4	946
136	Regulation of Phospholipase D Activity by Actin. Journal of Biological Chemistry, 2002, 277, 50683-50692.	3.4	64
137	Kinetic Analysis of Arabidopsis Phospholipase Dδ. Journal of Biological Chemistry, 2002, 277, 49685-49690.	3.4	63
138	The Arabidopsis Phospholipase D Family. Characterization of a Calcium-Independent and Phosphatidylcholine-Selective PLDζ1 with Distinct Regulatory Domains. Plant Physiology, 2002, 128, 1057-1068.	4.8	314
139	Activation of Plant Phospholipase Dβ by Phosphatidylinositol 4,5-Bisphosphate:  Characterization of Binding Site and Mode of Action. Biochemistry, 2002, 41, 4546-4553.	2.5	53
140	Phospholipase D in hormonal and stress signaling. Current Opinion in Plant Biology, 2002, 5, 408-414.	7.1	190
141	Networking of phospholipases in plant signal transduction. Physiologia Plantarum, 2002, 115, 331-335.	5.2	43
142	PLANTPHOSPHOLIPASES. Annual Review of Plant Biology, 2001, 52, 211-231.	14.3	241
143	In vivo substrates and the contribution of the common phospholipase D, PLDα, to wound-induced metabolism of lipids in Arabidopsis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1530, 236-248.	2.4	63
144	Phospholipase D and Phosphatidic Acid-Mediated Generation of Superoxide in Arabidopsis. Plant Physiology, 2001, 126, 1449-1458.	4.8	194

#	Article	IF	CITATIONS
145	A Novel Phospholipase D of Arabidopsis That Is Activated by Oleic Acid and Associated with the Plasma Membrane. Plant Physiology, 2001, 127, 1102-1112.	4.8	23
146	Regulation of plant water loss by manipulating the expression of phospholipase Dα. Plant Journal, 2001, 28, 135-144.	5.7	153
147	A Novel Phospholipase D of Arabidopsis That Is Activated by Oleic Acid and Associated with the Plasma Membrane. Plant Physiology, 2001, 127, 1102-1112.	4.8	146
148	Distinct Ca2+ Binding Properties of Novel C2 Domains of Plant Phospholipase Dα and β. Journal of Biological Chemistry, 2000, 275, 19700-19706.	3.4	116
149	Involvement of Phospholipase D in Wound-Induced Accumulation of Jasmonic Acid in Arabidopsis. Plant Cell, 2000, 12, 2237-2246.	6.6	260
150	Calcium-Regulated Proteolysis of eEF1A. Plant Physiology, 2000, 122, 957-966.	4.8	16
151	Involvement of Phospholipase D in Wound-Induced Accumulation of Jasmonic Acid in Arabidopsis. Plant Cell, 2000, 12, 2237.	6.6	21
152	Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Progress in Lipid Research, 2000, 39, 109-149.	11.6	186
153	The Role of Phospholipase D in Signaling Cascades1. Plant Physiology, 1999, 120, 645-652.	4.8	107
154	Subcellular Distribution and Tissue Expression of Phospholipase $D\hat{l}_{\pm}$, $D\hat{l}_{\pm}$, and $D\hat{l}_{\pm}$ in Arabidopsis1. Plant Physiology, 1999, 119, 1371-1378.	4.8	125
155	Molecular and biochemical properties and physiological roles of plant phospholipase D. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1439, 151-166.	2.4	54
156	Plant Phospholipase DÎ \pm Is an Acidic Phospholipase Active at Near-Physiological Ca2+ Concentrations. Archives of Biochemistry and Biophysics, 1999, 368, 347-353.	3.0	53
157	Increase in free linolenic and linoleic acids associated with phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves. Lipids and Lipid Metabolism, 1998, 1393, 193-202.	2.6	102
158	Substrate Selectivities and Lipid Modulation of Plant Phospholipase $D\hat{l}_{\pm}$, $-\hat{l}^2$, and $-\hat{l}^3$. Archives of Biochemistry and Biophysics, 1998, 353, 131-140.	3.0	150
159	Identification and Characterization of a Novel Plant Phospholipase D That Requires Polyphosphoinositides and Submicromolar Calcium for Activity in Arabidopsis. Journal of Biological Chemistry, 1997, 272, 7048-7054.	3.4	106
160	Molecular Heterogeneity of Phospholipase D (PLD). Journal of Biological Chemistry, 1997, 272, 28267-28273.	3.4	156
161	Antisense Suppression of Phospholipase Da Retards Abscisic Acid- and Ethylene-Promoted Senescence of Postharvest Arabidopsis Leaves. Plant Cell, 1997, 9, 2183.	6.6	6
162	Molecular analysis of phospholipase D. Trends in Plant Science, 1997, 2, 261-266.	8.8	39

#	Article	IF	CITATIONS
163	Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves Plant Cell, 1997, 9, 2183-2196.	6.6	346
164	Molecular Cloning and Functional Analysis of Polyphosphoinositide-dependent Phospholipase D, PLD \hat{l}^2 , from Arabidopsis. Journal of Biological Chemistry, 1997, 272, 7055-7061.	3.4	104
165	Characterization of Phospholipase D-Overexpressed and Suppressed Transgenic Tobacco and Arabidopsis., 1997,, 345-347.		O
166	Activation of phospholipase D and the possible mechanism of activation in wound-induced lipid hydrolysis in castor bean leaves. Lipids and Lipid Metabolism, 1996, 1303, 243-250.	2.6	122
167	Structural Heterogeneity of Phospholipase D in 10 Dicots. Biochemical and Biophysical Research Communications, 1996, 221, 31-36.	2.1	15
168	Changes in phospholipase D experession in soybeans during seed development and germination. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1171-1176.	1.9	19
169	Structure and analysis of phospholipase D gene from Ricinus communis L. Plant Molecular Biology, 1996, 32, 767-771.	3.9	9
170	Changes in the Plasma Membrane Distribution of Rice Phospholipase D during Resistant Interactions with Xanthomonas oryzae pv oryzae. Plant Cell, 1996, 8, 1079.	6.6	47
171	Purification and Immunological Analysis of Phospholipase D from Castor Bean Endosperm. Archives of Biochemistry and Biophysics, 1993, 306, 486-494.	3.0	95
172	Phosphatidylcholine Biosynthesis in Castor Bean Endosperm. Plant Physiology, 1990, 93, 250-255.	4.8	20
173	Partial purification and characterization of CTP:cholinephosphate cytidylyltransferase from castor bean endosperm. Archives of Biochemistry and Biophysics, 1989, 274, 338-347.	3.0	9
174	Alteration of the synthesis of lipoxygenase in the early stages of soybean cotyledon culture. Physiologia Plantarum, 1988, 72, 127-132.	5.2	8
175	Identification of Proteins Associated with Changes in the Linolenate Content of Soybean Cotyledons. , 1987, , 533-535.		1
176	Lipid-Mediated Signaling. , 0, , 202-243.		4