
Xuemin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5387732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Profiling Membrane Lipids in Plant Stress Responses. Journal of Biological Chemistry, 2002, 277, 31994-32002.	3.4	946
2	Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nature Protocols, 2010, 5, 986-992.	12.0	792
3	Signaling functions of phosphatidic acid. Progress in Lipid Research, 2006, 45, 250-278.	11.6	647
4	Phospholipase Dα1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2009, 21, 2357-2377.	6.6	517
5	Phospholipase DÂ1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9508-9513.	7.1	476
6	A Bifurcating Pathway Directs Abscisic Acid Effects on Stomatal Closure and Opening in Arabidopsis. Science, 2006, 312, 264-266.	12.6	375
7	Lipid signaling. Current Opinion in Plant Biology, 2004, 7, 329-336.	7.1	366
8	Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves Plant Cell, 1997, 9, 2183-2196.	6.6	346
9	The Arabidopsis Phospholipase D Family. Characterization of a Calcium-Independent and Phosphatidylcholine-Selective PLDI¶1 with Distinct Regulatory Domains. Plant Physiology, 2002, 128, 1057-1068.	4.8	314
10	The plasma membrane–bound phospholipase Dδenhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnology, 2004, 22, 427-433.	17.5	310
11	Regulatory Functions of Phospholipase D and Phosphatidic Acid in Plant Growth, Development, and Stress Responses. Plant Physiology, 2005, 139, 566-573.	4.8	302
12	Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research, 2016, 62, 55-74.	11.6	288
13	Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry, 2006, 67, 1907-1924.	2.9	270
14	Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry, 2008, 69, 1773-1781.	2.9	262
15	Involvement of Phospholipase D in Wound-Induced Accumulation of Jasmonic Acid in Arabidopsis. Plant Cell, 2000, 12, 2237-2246.	6.6	260
16	The Oleate-Stimulated Phospholipase D, PLDÂ, and Phosphatidic Acid Decrease H2O2-Induced Cell Death in Arabidopsis. Plant Cell, 2003, 15, 2285-2295.	6.6	251
17	PLANTPHOSPHOLIPASES. Annual Review of Plant Biology, 2001, 52, 211-231.	14.3	241
18	Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 927-935.	2.4	229

#	Article	IF	CITATIONS
19	Quantitative Profiling of Arabidopsis Polar Glycerolipids in Response to Phosphorus Starvation. Roles of Phospholipases Dζ1 and Dζ2 in Phosphatidylcholine Hydrolysis and Digalactosyldiacylglycerol Accumulation in Phosphorus-Starved Plants. Plant Physiology, 2006, 142, 750-761.	4.8	226
20	Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with Phospholipase Dδ to Transduce Hydrogen Peroxide Signals in the <i>Arabidopsis</i> Response to Stress. Plant Cell, 2012, 24, 2200-2212.	6.6	202
21	An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant Journal, 2012, 71, 161-172.	5.7	198
22	Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Current Opinion in Plant Biology, 2004, 7, 337-344.	7.1	197
23	Phospholipase D and Phosphatidic Acid-Mediated Generation of Superoxide in Arabidopsis. Plant Physiology, 2001, 126, 1449-1458.	4.8	194
24	Double Knockouts of Phospholipases Dζ1 and Dζ2 in Arabidopsis Affect Root Elongation during Phosphate-Limited Growth But Do Not Affect Root Hair Patterning. Plant Physiology, 2006, 140, 761-770.	4.8	193
25	Phospholipase D in hormonal and stress signaling. Current Opinion in Plant Biology, 2002, 5, 408-414.	7.1	190
26	Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Progress in Lipid Research, 2000, 39, 109-149.	11.6	186
27	Using Unnatural Protein Fusions to Engineer Resveratrol Biosynthesis in Yeast and Mammalian Cells. Journal of the American Chemical Society, 2006, 128, 13030-13031.	13.7	179
28	Arabidopsis Phospholipase Dα1 Interacts with the Heterotrimeric G-protein α-Subunit through a Motif Analogous to the DRY Motif in G-protein-coupled Receptors. Journal of Biological Chemistry, 2004, 279, 1794-1800.	3.4	172
29	Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant, Cell and Environment, 2010, 33, 627-635.	5.7	168
30	Phospholipase Dα3 Is Involved in the Hyperosmotic Response in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 803-816.	6.6	162
31	Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant Journal, 2009, 58, 376-387.	5.7	160
32	Molecular Heterogeneity of Phospholipase D (PLD). Journal of Biological Chemistry, 1997, 272, 28267-28273.	3.4	156
33	Regulation of plant water loss by manipulating the expression of phospholipase Dα. Plant Journal, 2001, 28, 135-144.	5.7	153
34	Substrate Selectivities and Lipid Modulation of Plant Phospholipase Dα, -β, and -γ. Archives of Biochemistry and Biophysics, 1998, 353, 131-140.	3.0	150
35	Nonspecific Phospholipase C NPC4 Promotes Responses to Abscisic Acid and Tolerance to Hyperosmotic Stress in <i>Arabidopsis</i> Â. Plant Cell, 2010, 22, 2642-2659.	6.6	150
36	Profiling lipid changes in plant response to low temperatures. Physiologia Plantarum, 2006, 126, 90-96.	5.2	147

#	Article	IF	CITATIONS
37	A Novel Phospholipase D of Arabidopsis That Is Activated by Oleic Acid and Associated with the Plasma Membrane. Plant Physiology, 2001, 127, 1102-1112.	4.8	146
38	Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends in Plant Science, 2010, 15, 693-700.	8.8	145
39	Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Frontiers in Bioscience - Landmark, 2007, 12, 2494.	3.0	140
40	Differential Degradation of Extraplastidic and Plastidic Lipids during Freezing and Post-freezing Recovery in Arabidopsis thaliana. Journal of Biological Chemistry, 2008, 283, 461-468.	3.4	139
41	Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Analytical Biochemistry, 2003, 314, 149-152.	2.4	126
42	Subcellular Distribution and Tissue Expression of Phospholipase Dα, Dβ, and Dγ in Arabidopsis1. Plant Physiology, 1999, 119, 1371-1378.	4.8	125
43	AtPLAI Is an Acyl Hydrolase Involved in Basal Jasmonic Acid Production and Arabidopsis Resistance to Botrytis cinerea. Journal of Biological Chemistry, 2007, 282, 18116-18128.	3.4	123
44	Activation of phospholipase D and the possible mechanism of activation in wound-induced lipid hydrolysis in castor bean leaves. Lipids and Lipid Metabolism, 1996, 1303, 243-250.	2.6	122
45	Distinct Ca2+ Binding Properties of Novel C2 Domains of Plant Phospholipase Dl $^\pm$ and l 2 . Journal of Biological Chemistry, 2000, 275, 19700-19706.	3.4	116
46	Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastidâ€localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation. Plant Journal, 2011, 66, 781-795.	5.7	114
47	Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant Journal, 2007, 50, 950-957.	5.7	109
48	Phosphatidic Acid Binds and Stimulates Arabidopsis Sphingosine Kinases. Journal of Biological Chemistry, 2011, 286, 13336-13345.	3.4	109
49	The Role of Phospholipase D in Signaling Cascades1. Plant Physiology, 1999, 120, 645-652.	4.8	107
50	Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Molecular Plant, 2021, 14, 470-487.	8.3	107
51	Identification and Characterization of a Novel Plant Phospholipase D That Requires Polyphosphoinositides and Submicromolar Calcium for Activity in Arabidopsis. Journal of Biological Chemistry, 1997, 272, 7048-7054.	3.4	106
52	Molecular Cloning and Functional Analysis of Polyphosphoinositide-dependent Phospholipase D, PLDβ, from Arabidopsis. Journal of Biological Chemistry, 1997, 272, 7055-7061.	3.4	104
53	Increase in free linolenic and linoleic acids associated with phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves. Lipids and Lipid Metabolism, 1998, 1393, 193-202.	2.6	102
54	Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. New Phytologist, 2013, 199, 228-240.	7.3	100

#	Article	IF	CITATIONS
55	Connections between Sphingosine Kinase and Phospholipase D in the Abscisic Acid Signaling Pathway in Arabidopsis. Journal of Biological Chemistry, 2012, 287, 8286-8296.	3.4	99
56	Purification and Immunological Analysis of Phospholipase D from Castor Bean Endosperm. Archives of Biochemistry and Biophysics, 1993, 306, 486-494.	3.0	95
57	Patatin-Related Phospholipase pPLAIIIβ-Induced Changes in Lipid Metabolism Alter Cellulose Content and Cell Elongation in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 1107-1123.	6.6	94
58	Dual Functions of Phospholipase DÎ ± 1 in Plant Response to Drought. Molecular Plant, 2008, 1, 262-269.	8.3	93
59	Lipid changes after leaf wounding in <i>Arabidopsis thaliana</i> : expanded lipidomic data form the basis for lipid coâ€occurrence analysis. Plant Journal, 2014, 80, 728-743.	5.7	90
60	Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses. Molecular Plant, 2018, 11, 1328-1343.	8.3	87
61	Phosphatidic Acid-Mediated Signaling. Advances in Experimental Medicine and Biology, 2013, 991, 159-176.	1.6	82
62	Profiling of plant hormones by mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2806-2813.	2.3	81
63	Direct Infusion Mass Spectrometry of Oxylipin-Containing Arabidopsis Membrane Lipids Reveals Varied Patterns in Different Stress Responses Â. Plant Physiology, 2012, 158, 324-339.	4.8	81
64	Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 25, 5030-5042.	6.6	80
65	Cytosolic Phosphorylating Glyceraldehyde-3-Phosphate Dehydrogenases Affect <i>Arabidopsis</i> Cellular Metabolism and Promote Seed Oil Accumulation. Plant Cell, 2014, 26, 3023-3035.	6.6	80
66	Plant Phospholipases: An Overview. Methods in Molecular Biology, 2012, 861, 123-137.	0.9	74
67	Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nature Plants, 2019, 5, 1012-1021.	9.3	73
68	Nonâ€specific phospholipase <scp>C</scp> 5 and diacylglycerol promote lateral root development under mild salt stress in <scp>A</scp> rabidopsis. Plant, Cell and Environment, 2014, 37, 2002-2013.	5.7	69
69	Evolutionary conservation of physical and functional interactions between phospholipase D and actin. Archives of Biochemistry and Biophysics, 2003, 412, 231-241.	3.0	68
70	The Patatin-Containing Phospholipase A pPLAIIα Modulates Oxylipin Formation and Water Loss in Arabidopsis thaliana. Molecular Plant, 2012, 5, 452-460.	8.3	68
71	BnTIR: an online transcriptome platform for exploring RNAâ€seq libraries for oil crop <i>Brassica napus</i> . Plant Biotechnology Journal, 2021, 19, 1895-1897.	8.3	68
72	Increased expression of phospholipase <scp>D</scp> α1 in guard cells decreases water loss with improved seed production under drought in <i><scp>B</scp>rassica napus</i> . Plant Biotechnology Journal, 2013, 11, 380-389.	8.3	65

#	Article	IF	CITATIONS
73	Phosphatidic Acid Binds to Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase and Promotes Its Cleavage in Arabidopsis. Journal of Biological Chemistry, 2013, 288, 11834-11844.	3.4	65
74	Regulation of Phospholipase D Activity by Actin. Journal of Biological Chemistry, 2002, 277, 50683-50692.	3.4	64
75	In vivo substrates and the contribution of the common phospholipase D, PLDα, to wound-induced metabolism of lipids in Arabidopsis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1530, 236-248.	2.4	63
76	Kinetic Analysis of Arabidopsis Phospholipase Dδ. Journal of Biological Chemistry, 2002, 277, 49685-49690.	3.4	63
77	Suppression of phospholipase Dα1 induces freezing tolerance in Arabidopsis: Response of cold-responsive genes and osmolyte accumulation. Journal of Plant Physiology, 2006, 163, 916-926.	3.5	60
78	Quantitative profiling and pattern analysis of triacylglycerol species in Arabidopsis seeds by electrospray ionization mass spectrometry. Plant Journal, 2014, 77, 160-172.	5.7	59
79	Phospholipase D and phosphatidic acid in plant immunity. Plant Science, 2019, 279, 45-50.	3.6	57
80	Crosstalk between Phospholipase D and Sphingosine Kinase in Plant Stress Signaling. Frontiers in Plant Science, 2012, 3, 51.	3.6	55
81	Molecular and biochemical properties and physiological roles of plant phospholipase D. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1439, 151-166.	2.4	54
82	Plant Phospholipase Dα Is an Acidic Phospholipase Active at Near-Physiological Ca2+ Concentrations. Archives of Biochemistry and Biophysics, 1999, 368, 347-353.	3.0	53
83	Activation of Plant Phospholipase Dβ by Phosphatidylinositol 4,5-Bisphosphate:  Characterization of Binding Site and Mode of Action. Biochemistry, 2002, 41, 4546-4553.	2.5	53
84	Phosphatidic acid: an emerging versatile class of cellular mediators. Essays in Biochemistry, 2020, 64, 533-546.	4.7	53
85	Patatin-Related Phospholipase pPLAIIIδIncreases Seed Oil Content with Long-Chain Fatty Acids in Arabidopsis Â. Plant Physiology, 2013, 162, 39-51.	4.8	52
86	Role of Aminoalcoholphosphotransferases 1 and 2 in Phospholipid Homeostasis in Arabidopsis. Plant Cell, 2015, 27, 1512-1528.	6.6	52
87	Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol. Plant Physiology, 2017, 174, 110-123.	4.8	52
88	Different effects of phospholipase Dζ2 and nonâ€specific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency. Plant Journal, 2018, 94, 315-326.	5.7	52
89	Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (<i>Glycine max</i>). Plant Biotechnology Journal, 2020, 18, 155-171.	8.3	52
90	The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Progress in Lipid Research, 2022, 86, 101158.	11.6	52

#	Article	IF	CITATIONS
91	Identification of Heat Responsive Genes in Brassica napus Siliques at the Seed-Filling Stage through Transcriptional Profiling. PLoS ONE, 2014, 9, e101914.	2.5	49
92	Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress. Nature Communications, 2020, 11, 3439.	12.8	48
93	Changes in the Plasma Membrane Distribution of Rice Phospholipase D during Resistant Interactions with Xanthomonas oryzae pv oryzae. Plant Cell, 1996, 8, 1079.	6.6	47
94	Overexpression of patatinâ€related phospholipase <scp>AIII</scp> î´altered plant growth and increased seed oil content in camelina. Plant Biotechnology Journal, 2015, 13, 766-778.	8.3	47
95	Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle. Frontiers in Plant Science, 2012, 3, 49.	3.6	46
96	Lipidomics in food science. Current Opinion in Food Science, 2017, 16, 80-87.	8.0	46
97	Phosphatidylinositolâ€hydrolyzing phospholipase C4 modulates rice response to salt and drought. Plant, Cell and Environment, 2019, 42, 536-548.	5.7	46
98	Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in <i>Arabidopsis</i> . Plant, Cell and Environment, 2017, 40, 2220-2235.	5.7	45
99	Suppression of Phospholipase Dγs Confers Increased Aluminum Resistance in Arabidopsis thaliana. PLoS ONE, 2011, 6, e28086.	2.5	45
100	Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 639-649.	2.4	44
101	Networking of phospholipases in plant signal transduction. Physiologia Plantarum, 2002, 115, 331-335.	5.2	43
102	Rice sulfoquinovosyltransferase SQD2.1 mediates flavonoid glycosylation and enhances tolerance to osmotic stress. Plant, Cell and Environment, 2019, 42, 2215-2230.	5.7	40
103	Molecular analysis of phospholipase D. Trends in Plant Science, 1997, 2, 261-266.	8.8	39
104	Interaction and Regulation Between Lipid Mediator Phosphatidic Acid and Circadian Clock Regulators. Plant Cell, 2019, 31, 399-416.	6.6	39
105	Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1736, 1-9.	2.4	38
106	Patterns and Timing in Expression of Early Auxin-Induced Genes Imply Involvement of Phospholipases A (pPLAs) in the Regulation of Auxin Responses. Molecular Plant, 2013, 6, 1473-1486.	8.3	38
107	Comprehensive Quantification of Triacylglycerols in Soybean Seeds by Electrospray Ionization Mass Spectrometry with Multiple Neutral Loss Scans. Scientific Reports, 2014, 4, 6581.	3.3	38
108	Dual Activities of Plant cGMP-Dependent Protein Kinase and Its Roles in Gibberellin Signaling and Salt Stress. Plant Cell, 2019, 31, 3073-3091.	6.6	38

#	Article	IF	CITATIONS
109	Rice Phospholipase D Isoforms Show Differential Cellular Location and Gene Induction. Plant and Cell Physiology, 2003, 44, 1013-1026.	3.1	37
110	Differential changes in galactolipid and phospholipid species in soybean leaves and roots under nitrogen deficiency and after nodulation. Phytochemistry, 2013, 96, 81-91.	2.9	37
111	Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice. Journal of Experimental Botany, 2015, 66, 6945-6955.	4.8	37
112	Leaf Lipid Alterations in Response to Heat Stress of Arabidopsis thaliana. Plants, 2020, 9, 845.	3.5	36
113	Phospholipase Dε enhances <i>Braasca napus</i> growth and seed production in response to nitrogen availability. Plant Biotechnology Journal, 2016, 14, 926-937.	8.3	35
114	Transcriptional Regulation of Lipid Catabolism during Seedling Establishment. Molecular Plant, 2020, 13, 984-1000.	8.3	32
115	Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency. Plant Cell, 2021, 33, 766-780.	6.6	31
116	Evidence for and Characterization of Ca2+ Binding to the Catalytic Region of Arabidopsis thaliana Phospholipase Dβ. Journal of Biological Chemistry, 2004, 279, 47833-47839.	3.4	30
117	Lipid signaling in plants. Frontiers in Plant Science, 2013, 4, 216.	3.6	30
118	The Sulfoquinovosyltransferase-like Enzyme SQD2.2 is Involved in Flavonoid Glycosylation, Regulating Sugar Metabolism and Seed Setting in Rice. Scientific Reports, 2017, 7, 4685.	3.3	28
119	PLDα1-knockdown soybean seeds display higher unsaturated glycerolipid contents and seed vigor in high temperature and humidity environments. Biotechnology for Biofuels, 2019, 12, 9.	6.2	28
120	Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. Plant Journal, 2020, 103, 1351-1371.	5.7	28
121	A Novel Phospholipase D of Arabidopsis That Is Activated by Oleic Acid and Associated with the Plasma Membrane. Plant Physiology, 2001, 127, 1102-1112.	4.8	23
122	Rapid characterization of the fatty acyl composition of complex lipids by collision-induced dissociation time-of-flight mass spectrometry. Journal of Lipid Research, 2007, 48, 235-241.	4.2	23
123	Arabidopsis phospholipase Dα1 and Dδ oppositely modulate EDS1- and SA-independent basal resistance against adapted powdery mildew. Journal of Experimental Botany, 2018, 69, 3675-3688.	4.8	23
124	Diacylglycerol kinase and associated lipid mediators modulate rice root architecture. New Phytologist, 2019, 223, 261-276.	7.3	23
125	Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. BMC Plant Biology, 2014, 14, 332.	3.6	22
126	PLD: Phospholipase Ds in Plant Signaling. Signaling and Communication in Plants, 2014, , 3-26.	0.7	22

#	Article	IF	CITATIONS
127	Nonspecific phospholipase C6 increases seed oil production in oilseed Brassicaceae plants. New Phytologist, 2020, 226, 1055-1073.	7.3	22
128	Involvement of Phospholipase D in Wound-Induced Accumulation of Jasmonic Acid in Arabidopsis. Plant Cell, 2000, 12, 2237.	6.6	21
129	Phosphatidylcholine Biosynthesis in Castor Bean Endosperm. Plant Physiology, 1990, 93, 250-255.	4.8	20
130	Modifications of membrane lipids in response to wounding of <i>Arabidopsis thaliana</i> leaves. Plant Signaling and Behavior, 2015, 10, e1056422.	2.4	20
131	Nonâ€specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. Plant Journal, 2016, 86, 308-321.	5.7	20
132	Changes in phospholipase D experession in soybeans during seed development and germination. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1171-1176.	1.9	19
133	Expression and characterization of Arabidopsis phospholipase Dγ2. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1450-1458.	2.4	19
134	THF1 mutations lead to increased basal and woundâ€induced levels of oxylipins that stimulate anthocyanin biosynthesis via COI1 signaling in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2014, 56, 916-927.	8.5	19
135	The effect of phospholipase Dα3 in Arabidopsis response to hyperosmotic stress and glucose. Plant Signaling and Behavior, 2008, 3, 1099-1100.	2.4	17
136	Calcium-Regulated Proteolysis of eEF1A. Plant Physiology, 2000, 122, 957-966.	4.8	16
137	Membrane glycerolipidome of soybean root hairs and its response to nitrogen and phosphate availability. Scientific Reports, 2016, 6, 36172.	3.3	16
138	Cytidinediphosphateâ€diacylglycerol synthase 5 is required for phospholipid homeostasis and is negatively involved in hyperosmotic stress tolerance. Plant Journal, 2018, 94, 1038-1050.	5.7	16
139	Structural Heterogeneity of Phospholipase D in 10 Dicots. Biochemical and Biophysical Research Communications, 1996, 221, 31-36.	2.1	15
140	Molybdenum induces alterations in the glycerolipidome that confer drought tolerance in wheat. Journal of Experimental Botany, 2020, 71, 5074-5086.	4.8	15
141	Isolation and characterization of GoRAV, a novel gene encoding a RAV-type protein in Galegae orientalis. Genes and Genetic Systems, 2009, 84, 101-109.	0.7	14
142	Plant Phospholipase D. Plant Cell Monographs, 2010, , 39-62.	0.4	14
143	Phospholipase D―and phosphatidic acidâ€mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (<i>Glycine max</i>). Plant Journal, 2021, 106, 142-158.	5.7	13
144	Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina. Biotechnology for Biofuels, 2021, 14, 49.	6.2	13

#	Article	IF	CITATIONS
145	Acylation of nonâ€specific phospholipase C4 determines its function in plant response to phosphate deficiency. Plant Journal, 2021, 106, 1647-1659.	5.7	13
146	Biochemical Analysis of the Interaction Between Phospholipase Dα1 and GTP-Binding Protein α-Subunit from Arabidopsis thaliana. Methods in Molecular Biology, 2013, 1043, 21-35.	0.9	11
147	Phosphatidic Acid as Lipid Messenger and Growth Regulators in Plants. Signaling and Communication in Plants, 2014, , 69-92.	0.7	11
148	Partial purification and characterization of CTP:cholinephosphate cytidylyltransferase from castor bean endosperm. Archives of Biochemistry and Biophysics, 1989, 274, 338-347.	3.0	9
149	Structure and analysis of phospholipase D gene from Ricinus communis L. Plant Molecular Biology, 1996, 32, 767-771.	3.9	9
150	Transcriptomic basis of functional difference and coordination between seeds and the silique wall of Brassica napus during the seed-filling stage. Plant Science, 2015, 233, 186-199.	3.6	9
151	pPLA: Patatin-Related Phospholipase As with Multiple Biological Functions. Signaling and Communication in Plants, 2014, , 93-108.	0.7	9
152	Patatin-Related Phospholipase pPLAIIIÎ ³ Involved in Osmotic and Salt Tolerance in Arabidopsis. Plants, 2020, 9, 650.	3.5	9
153	Alteration of the synthesis of lipoxygenase in the early stages of soybean cotyledon culture. Physiologia Plantarum, 1988, 72, 127-132.	5.2	8
154	Phospholipid Signaling In Plant Response To Drought And Salt Stress. , 2007, , 183-192.		8
155	Nuclear translocation of proteins and the effect of phosphatidic acid. Plant Signaling and Behavior, 2014, 9, e977711.	2.4	8
156	Phospholipase Dα6 and phosphatidic acid regulate gibberellin signaling in rice. EMBO Reports, 2021, 22, e51871.	4.5	8
157	Cadmium-induced changes in composition and co-metabolism of glycerolipids species in wheat root: Glycerolipidomic and transcriptomic approach. Journal of Hazardous Materials, 2022, 423, 127115.	12.4	8
158	Proteomic insight into reduced cell elongation resulting from overexpression of patatin-related phospholipase pPLAIIIδ inArabidopsis thaliana. Plant Signaling and Behavior, 2014, 9, e28519.	2.4	7
159	Antisense Suppression of Phospholipase Da Retards Abscisic Acid- and Ethylene-Promoted Senescence of Postharvest Arabidopsis Leaves. Plant Cell, 1997, 9, 2183.	6.6	6
160	Phospholipase Dε interacts with autophagyâ€related protein 8 and promotes autophagy in Arabidopsis response to nitrogen deficiency. Plant Journal, 2022, 109, 1519-1534.	5.7	6
161	Isolation and characterization of GoDREB encoding an ERF-type protein in forage legume Galegae orientalis. Genes and Genetic Systems, 2010, 85, 157-166.	0.7	5
162	Assaying Different Types of Plant Phospholipase D Activities In Vitro. Methods in Molecular Biology, 2013, 1009, 205-217.	0.9	5

#	ARTICLE	IF	CITATIONS
163	Lipid-Mediated Signaling. , 0, , 202-243.		4
164	Effects of Phospholipase Dε Overexpression on Soybean Response to Nitrogen and Nodulation. Frontiers in Plant Science, 2022, 13, .	3.6	4
165	Phospholipid-Derived Signaling in Plant Response to Temperature and Water Stresses. , 2006, 27, 57-66.		3
166	Overexpression of patatin-related phospholipase AIIIβ altered the content and composition of sphingolipids in Arabidopsis. Frontiers in Plant Science, 2014, 5, 553.	3.6	3
167	Extraction and Profiling of Plant Polar Glycerol Lipids. Bio-protocol, 2016, 6, .	0.4	3
168	Translate Plant Metabolism into Modern Agriculture: A Starting Point. Molecular Plant, 2012, 5, 291-293.	8.3	2
169	Lipidomics: ESI-MS/MS-Based Profiling to Determine the Function of Genes Involved in Metabolism of Complex Lipids. , 2007, , 87-92.		2
170	High-Throughput Lipid Profiling to Identify and Characterize Genes Involved in Lipid Metabolism, Signaling, and Stress Response. , 2005, , 307-322.		1
171	Identification of Proteins Associated with Changes in the Linolenate Content of Soybean Cotyledons. , 1987, , 533-535.		1
172	Positional Analysis of Fatty Acids in Phospholipids by PLA2 Treatment. Bio-protocol, 2016, 6, .	0.4	1
173	Specific Changes in Arabidopsis thaliana Rosette Lipids during Freezing Can Be Associated with Freezing Tolerance. Metabolites, 2022, 12, 385.	2.9	1
174	Lipids Phospholipase A in Animals and Plants. , 2021, , 744-757.		0
175	Two Novel Types of Arabidopsis Phospholipase D. , 2003, , 259-262.		0
176	Characterization of Phospholipase D-Overexpressed and Suppressed Transgenic Tobacco and Arabidopsis. , 1997, , 345-347.		0