
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5386236/publications.pdf Version: 2024-02-01

SHICEKI ΝΑΚΑ

#	Article	IF	CITATIONS
1	On-demand Patterning for Organic Light-emitting Diodes Using Laser Irradiation. Chemistry Letters, 2022, 51, 62-64.	1.3	0
2	Efficient Interfacial Upconversion Enabling Bright Emission at an Extremely Low Driving Voltage in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	17
3	Spatial distribution of triplet excitons formed from charge transfer states at the donor/acceptor interface. Journal of Materials Chemistry A, 2022, 10, 19935-19940.	10.3	7
4	Carrier Mobilities in Amorphous Organic Semiconductor Films Prepared at Various Film Formation Processes. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100330.	1.8	1
5	Additive color mixing of semitransparent laminated tandem type polymer light-emitting diodes. Molecular Crystals and Liquid Crystals, 2021, 729, 78-84.	0.9	1
6	Fabrication of Cd-free ZnCuInS/ZnS based inverted quantum dot light-emitting diode: Considering substrate temperature effect on sputtered ZnO layer. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 063401.	1.2	1
7	Mixed single-layer and self-alignment technology of organic light-emitting diodes and multi-functional integration in organic devices. Japanese Journal of Applied Physics, 2020, 59, SO0802.	1.5	1
8	Characteristics of electron injection at the oxide electrode/polyethylenimine ethoxylated/Alq ₃ interface. Japanese Journal of Applied Physics, 2020, 59, SDDC03.	1.5	3
9	Semitransparent Organic Solar Cells with Polyethylenimine Ethoxylated Interfacial Layer Using Lamination Process. IEICE Transactions on Electronics, 2019, E102.C, 196-198.	0.6	4
10	Patterned emission of organic light emitting diodes with laser irradiation. , 2019, , .		0
11	Gate-bias and temperature dependence of charge transport in dinaphtho[2,3-b:2′,3′-d]thiophene thin-film transistors with MoO3/Au electrodes. Japanese Journal of Applied Physics, 2018, 57, 04FL07.	1.5	0
12	Light-emitting Organic Photovoltaic Devices Based on Rubrene/PTCDI-C13 Stack. Electrochemistry, 2017, 85, 280-282.	1.4	7
13	Blue/Green Selective Organic Photodiodes with Tandem Structure. IEICE Transactions on Electronics, 2017, E100.C, 118-121.	0.6	1
14	Correlation between Physical and Electrical Properties in Pentacene and C8-BTBT-based Organic Thin Film Transistors. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 363-368.	0.3	14
15	Semi-transparent OLEDs fabrication using lamination process. , 2016, , .		0
16	Correlation between contact angle and electrical properties in pentacene and C6-DNT-V-based organic thin film transistors. , 2016, , .		2
17	Gate-bias and temperature dependence in pentacene-based organic thin film transistor with MoO <inf>3</inf> /Au contacts. , 2016, , .		1
18	Paper No P21: Organic Thin-Film Transistors Using V-Shaped Organic Semiconductor With Various Interfacial Layers. Digest of Technical Papers SID International Symposium, 2015, 46, 88-88.	0.3	0

#	Article	IF	CITATIONS
19	Synthesis and polymerization of phenylacetylene having two carbazole units and properties of the formed polymer. Journal of Polymer Science Part A, 2015, 53, 1245-1251.	2.3	5
20	MoO ₃ /Ag/MoO ₃ anode for organic light-emitting diodes and its carrier injection property. Japanese Journal of Applied Physics, 2015, 54, 054101.	1.5	22
21	Fabrication of thienoacene-based Organic Thin-Film Transistors with various interfacial layers. , 2015, , .		0
22	Transparent Organic Light-Emitting Diodes with Top Electrode Using Ion-Plating Method. IEICE Transactions on Electronics, 2015, E98.C, 1035-1038.	0.6	3
23	ITE Review 2015 Series (2); Research Trend on Information Display Technology. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2015, 69, 234-247.	0.1	1
24	Localized surface plasmon resonance effect in organic light-emitting devices with Ag islands. Japanese Journal of Applied Physics, 2014, 53, 041602.	1.5	6
25	Direct comparison of charge transport and electronic traps in polymer–fullerene blends under dark and illuminated conditions. Organic Electronics, 2014, 15, 299-305.	2.6	16
26	Improvement of Blue Organic Photodiode with Pyrazol-Derivative. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 343-346.	0.3	7
27	Origin of enhanced electrical and conducting properties in pentacene films doped by molybdenum trioxide. Organic Electronics, 2013, 14, 2698-2704.	2.6	56
28	Mobility enhancement of top contact pentacene based organic thin film transistor with bi-layer GeO/Au electrodes. Applied Physics Letters, 2013, 102, .	3.3	19
29	Evaluation of uniformity for organic film evaporation using two dimensional different apertures. Vacuum, 2013, 92, 26-31.	3.5	3
30	Efficient electron transport in 4,4′-bis[N-(1-napthyl)-N-phenyl-amino] biphenyl and the applications in white organic light emitting devices. Organic Electronics, 2013, 14, 1015-1020.	2.6	7
31	Self-Alignment Organic Field-Effect Transistors with Silver Nanoparticle Electrodes. Japanese Journal of Applied Physics, 2013, 52, 091601.	1.5	1
32	Performance Enhancement of Top-Contact Pentacene-Based Organic Thin-Film Transistors with Bilayer WO3/Au Electrodes. Japanese Journal of Applied Physics, 2013, 52, 03BB08.	1.5	19
33	Organic Light-Emitting Diode with Solution-Processed Molybdenum Trioxide from Dilute Aqueous Solution. Japanese Journal of Applied Physics, 2013, 52, 05DC15.	1.5	5
34	Approaches to Realizing Sheet-Type Scanner with Scanning Light Source. Japanese Journal of Applied Physics, 2013, 52, 05DC21.	1.5	4
35	Dual roles of MoO3-doped pentacene thin films as hole-extraction and multicharge-separation functions in pentacene/C60 heterojunction organic solar cells. Applied Physics Letters, 2013, 102, .	3.3	30
36	Optimization and Evaluation of Temperature Dependences in Graded Organic Solar Cells with Cupper Phthalocyanine/Fullerene System. IEICE Transactions on Electronics, 2013, E96.C, 1054-1060.	0.6	0

#	Article	IF	CITATIONS
37	Enhanced carrier injection in pentacene thin-film transistors by inserting a MoO3-doped pentacene layer. Applied Physics Letters, 2012, 100, .	3.3	52
38	Investigation of Solution-Processed Organic Light-Emitting Diode Fabrication on Patterned Line Structure Using Bar-Coating Method. Japanese Journal of Applied Physics, 2012, 51, 112102.	1.5	4
39	Complementary Circuit with Self-Alignment Organic/Oxide Thin-Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 021604.	1.5	4
40	Temperature Dependence of Trap Density Distribution in Poly(3-hexylthiophene) and 1-(3-Methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 Based Blending Films under Illumination. Japanese Journal of Applied Physics, 2012, 51, 021603.	1.5	3
41	Top Contact Pentacene Based Organic Thin Film Transistor With Bi-layer TiO2Electrodes. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 659-664.	0.3	14
42	Light-emitting Organic Solar Cells Based on Small Molecular Ir(ppy)3 and Polymer P3HT: PCBM. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 277-280.	0.3	2
43	Bi-functional electroluminescent and photovoltaic devices based on rubrene-doped poly(3-hexylthiophene):1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Synthetic Metals, 2012, 162, 281-284.	3.9	7
44	Improvement of roll-off in power efficiency for mixed single layer organic light emitting devices by co-doping. Synthetic Metals, 2012, 162, 1204-1209.	3.9	3
45	Charge transport characteristics in P3HT:PCBM organic blends under illumination: Influence of metal work functions. Chemical Physics Letters, 2012, 529, 64-68.	2.6	18
46	Optical, morphological, structural, electrical, molecular orientation, and electroluminescence characteristics of organic semiconductor films prepared at various deposition rates. Thin Solid Films, 2012, 520, 2283-2288.	1.8	17
47	Temperature Dependence of Trap Density Distribution in Poly(3-hexylthiophene) and 1-(3-Methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 Based Blending Films under Illumination. Japanese Journal of Applied Physics, 2012, 51, 021603.	1.5	7
48	Direct Comparison of Solution- and Vacuum-Processed Small Molecular Organic Light-Emitting Devices with a Mixed Single Layer. ACS Applied Materials & Interfaces, 2011, 3, 2496-2503.	8.0	44
49	Highly simplified small molecular phosphorescent organic light emitting devices with a solution-processed single layer. AlP Advances, 2011, 1, 032130.	1.3	7
50	Influence of Perylene Doping on Performance of Organic Solar Cells Based on P3HT:PCBM Blend. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 325-328.	0.3	0
51	Investigation of carrier injection mechanism in small molecular organic light emitting device with a mixed single organic layer. Applied Physics A: Materials Science and Processing, 2011, 102, 681-687.	2.3	3
52	Improved performance of mixed single layer top-emission organic light emitting devices using capping layer. Solid-State Electronics, 2011, 56, 155-158.	1.4	9
53	Solution-Processed Small Molecular Organic Light-Emitting Devices with a Mixed Single Layer. Japanese Journal of Applied Physics, 2011, 50, 01BC06.	1.5	2
54	Passivation Effect of Diamond-Like Carbon Films for Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2011, 50, 062103.	1.5	2

#	Article	IF	CITATIONS
55	Double-Faced Organic Light-Emitting Device Using Laminate Method. Japanese Journal of Applied Physics, 2011, 50, 01BC12.	1.5	2
56	Bias and temperature dependent charge transport in solution-processed small molecular mixed single layer organic light emitting devices. Applied Physics Letters, 2011, 98, .	3.3	55
57	Self-Aligned Organic Light-Emitting Diodes with Color Changing by Ink-Jet Printing Dots. Japanese Journal of Applied Physics, 2011, 50, 01BC09.	1.5	3
58	Solution-Processed Small Molecular Organic Light-Emitting Devices with a Mixed Single Layer. Japanese Journal of Applied Physics, 2011, 50, 01BC06.	1.5	4
59	Double-Faced Organic Light-Emitting Device Using Laminate Method. Japanese Journal of Applied Physics, 2011, 50, 01BC12.	1.5	2
60	Self-Aligned Organic Light-Emitting Diodes with Color Changing by Ink-Jet Printing Dots. Japanese Journal of Applied Physics, 2011, 50, 01BC09.	1.5	1
61	Passivation Effect of Diamond-Like Carbon Films for Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2011, 50, 062103.	1.5	2
62	Pâ€162: Carrier Injection Mechanism in a Mixed Single Layer Organic Light Emitting Device. Digest of Technical Papers SID International Symposium, 2010, 41, 1856-1859.	0.3	0
63	Performance improvement of rubrene-based organic light emitting devices with a mixed single layer. Applied Physics A: Materials Science and Processing, 2010, 100, 1103-1108.	2.3	22
64	Temperature dependence of carrier injection in small molecular organic light emitting device with a mixed single layer. Chemical Physics Letters, 2010, 501, 75-79.	2.6	3
65	High efficiency rubrene based inverted top-emission organic light emitting devices with a mixed single layer. Journal of Luminescence, 2010, 130, 1198-1202.	3.1	21
66	Competitive emission process in mixed single layer top-emission organic light emitting device with reduced efficiency roll-off. Applied Physics Letters, 2010, 97, .	3.3	18
67	Front-Light Source Using Inverted Organic Light-Emitting Diodes with Microcathode Arrays. Japanese Journal of Applied Physics, 2010, 49, 04DK11.	1.5	1
68	Evaluation of Reliability in Rubrene-Based Organic Light Emitting Devices with a Mixed Single Layer. Japanese Journal of Applied Physics, 2010, 49, 01AA02.	1.5	9
69	Improved Performance of Top-Emission Organic Light Emitting Device With a Mixed Single Layer. Molecular Crystals and Liquid Crystals, 2010, 519, 1-8.	0.9	5
70	Transparent-Oxide–Semiconductor-Based Self-Alignment Thin-Film Transistors. Japanese Journal of Applied Physics, 2009, 48, 04C097.	1.5	5
71	Fully Self-Aligned Oxide-Semiconductor Field-Effect Transistors. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 507-510.	0.3	1
72	Dual Self-Aligned Vertical Multichannel Organic Transistors. Applied Physics Express, 2008, 1, 011801.	2.4	21

#	Article	IF	CITATIONS
73	Light-Emitting Seal Using Self-Aligned Organic Light-Emitting Structure. Japanese Journal of Applied Physics, 2008, 47, 472.	1.5	9
74	Surface Roughness of Organic Semiconductor Superlattice Using Pentacene as Semiconductor. Japanese Journal of Applied Physics, 2008, 47, 438-440.	1.5	3
75	Organic Field-Effect Transistors with HighKAPPA. HfO2/Resin Double Gate Insulator. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 189-192.	0.3	5
76	Organic Field-Effect Transistor Integrated Circuits using Self-Alignment Process Technology. Japanese Journal of Applied Physics, 2007, 46, 2666-2668.	1.5	16
77	Organic Bifunctional Devices with Emission and Sensing Abilities. Japanese Journal of Applied Physics, 2007, 46, 1328-1332.	1.5	8
78	Build-on Technology of Bidirectional Optical Communication System Using Bifunctional Organic Diodes. Japanese Journal of Applied Physics, 2007, 46, 2669-2672.	1.5	5
79	Oscillation method for uniform formation of solution-processed organic films and its application to organic light-emitting devices. Proceedings of SPIE, 2007, , .	0.8	Ο
80	Self-Aligned Multifunction Diodes Using Ink-Jet Printing Method. Molecular Crystals and Liquid Crystals, 2007, 471, 253-260.	0.9	3
81	Multi-Color Organic Light Emitting Panels Using Self-Aligned Ink-Jet Printing Technology. Molecular Crystals and Liquid Crystals, 2007, 471, 261-268.	0.9	8
82	Solution-processed Small Organic Electrophosphorescent Devices with Arylamine Polymer Buffer Layer. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 177-180.	0.3	2
83	Synthesis and Electroluminescence Properties offac-Tris(2-phenylpyridine)iridium Derivatives Containing Hole-Trapping Moieties. European Journal of Inorganic Chemistry, 2006, 2006, 3676-3683.	2.0	59
84	Top-Emission Organic Light-Emitting Diodes with Ink-Jet Printed Self-Aligned Emission Zones. Japanese Journal of Applied Physics, 2006, 45, 1829-1831.	1.5	23
85	Organic Multifunction Diodes Operable for Emission and Photodetection Modes. Japanese Journal of Applied Physics, 2006, 45, 3750-3753.	1.5	16
86	Carrier mobility of organic thin films using lateral electrode structure with optical slits. Applied Physics Letters, 2006, 89, 132106.	3.3	18
87	Durability Test of Solution-Processed Organic Electrophosphorescent Devices with Small Organic Molecules. Japanese Journal of Applied Physics, 2006, 45, 250-254.	1.5	22
88	Synthesis and Carrier-transporting Properties of 5,10-Dihydro-5,5-dimethyl-10,10-diphenyl-1,9-diazasilanthrene. Chemistry Letters, 2005, 34, 1698-1699.	1.3	1
89	Improved white organic electroluminescent devices using fine mesh as an evaporation mask. Current Applied Physics, 2005, 5, 1-4.	2.4	10
90	Organic electrophosphorescent devices with mixed hole transport material as emission layer. Current Applied Physics, 2005, 5, 305-308.	2.4	44

#	Article	IF	CITATIONS
91	Macrocyclic and Acyclic Bis(2,5-diphenyl-1,3,4-oxadiazole)s with Electron-Transporting and Hole-Blocking Ability in Organic Electroluminescent Devices. Macromolecular Chemistry and Physics, 2005, 206, 1576-1582.	2.2	10
92	Sprayed Organic Electrophosphorescent Devices with Small Organic Molecules. Japanese Journal of Applied Physics, 2005, 44, 626-629.	1.5	12
93	Improved Light Outcoupling in Organic Electroluminescent Devices with Random Dots. Japanese Journal of Applied Physics, 2005, 44, 613-616.	1.5	11
94	Organic Bi-function Matrix Array. Japanese Journal of Applied Physics, 2005, 44, 2826-2829.	1.5	17
95	Top-Absorption Organic Photodiodes Suitable for Device Integration. Japanese Journal of Applied Physics, 2005, 44, 2830-2832.	1.5	7
96	Dual Drive and Emission Panel. Japanese Journal of Applied Physics, 2005, 44, 3682-3685.	1.5	32
97	Self-Aligned Bank Formation of Organic Electroluminescent Devices Using Ink-Jet Printing Method. Japanese Journal of Applied Physics, 2004, 43, 7725-7728.	1.5	31
98	White Organic Electroluminescent Devices Fabricated Using Ink-Jet Printing Method. Japanese Journal of Applied Physics, 2004, 43, 7395-7398.	1.5	13
99	Self-Aligned Organic Field-Effect Transistors Using Back-Surface Exposure Method. Japanese Journal of Applied Physics, 2004, 43, 2323-2325.	1.5	22
100	Synthesis and Properties of 9,9′-Diaryl-4,5-diazafluorenes. A New Type of Electron-Transporting and Hole-Blocking Material in EL Device. Chemistry Letters, 2004, 33, 276-277.	1.3	29
101	Painting Method for Organic Electroluminescent Devices. Japanese Journal of Applied Physics, 2003, 42, 4529-4534.	1.5	15
102	Evaluation of bulk trap density of tris-(8-hydroxyquinoline) aluminum. Journal of Applied Physics, 2002, 92, 1450-1452.	2.5	7
103	Organic heterojunction phototransistor. Journal of Applied Physics, 2002, 91, 1171-1174.	2.5	49
104	Nondoped-type white organic electroluminescent devices utilizing complementary color and exciton diffusion. Applied Physics Letters, 2002, 81, 3329-3331.	3.3	100
105	Spray Method for Organic Electroluminescent Device Fabrication. Japanese Journal of Applied Physics, 2002, 41, 6219-6222.	1.5	26
106	Low Operational Voltage of Organic Electroluminescent Devices with a High Bipolar Conducting Silole Derivative. Japanese Journal of Applied Physics, 2002, 41, 6582-6585.	1.5	30
107	Carrier transport properties of organic materials for EL device operation. Synthetic Metals, 2000, 111-112, 331-333.	3.9	212
108	High electron mobility in bathophenanthroline. Applied Physics Letters, 2000, 76, 197-199.	3.3	279

#	Article	IF	CITATIONS
109	Time-of-Flight Measurement of Hole Mobility in Aluminum (III) Complexes. Japanese Journal of Applied Physics, 1999, 38, L1252-L1254.	1.5	31
110	Electrical properties of organic electroluminescent devices with aluminium alloy cathode. Synthetic Metals, 1997, 91, 129-130.	3.9	47
111	Color Control of Organic Electroluminescent Devices with Mixed Signal Layer Terebijon Gakkaishi (Journal of the Institute of Television Engineers of Japan), 1995, 49, 692-694.	0.0	1
112	Organic Electroluminescent Devices Using a Mixed Single Layer. Japanese Journal of Applied Physics, 1994, 33, L1772-L1774.	1.5	56