Kay Saalwächter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5385289/publications.pdf

Version: 2024-02-01

193 papers

9,215 citations

54 h-index 85 g-index

207 all docs

207 docs citations

times ranked

207

6997 citing authors

#	Article	IF	CITATIONS
1	Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Progress in Nuclear Magnetic Resonance Spectroscopy, 2007, 51, 1-35.	3.9	365
2	Low-Field NMR Investigations of Nanocomposites: Polymer Dynamics and Network Effects. Macromolecules, 2011, 44, 913-922.	2.2	207
3	Uncertainties in the Determination of Cross-Link Density by Equilibrium Swelling Experiments in Natural Rubber. Macromolecules, 2008, 41, 4717-4729.	2.2	201
4	Highly Ordered Columnar Structures from Hexa-peri-hexabenzocoronenes—Synthesis, X-ray Diffraction, and Solid-State Heteronuclear Multiple-Quantum NMR Investigations. Angewandte Chemie - International Edition, 1999, 38, 3039-3042.	7.2	178
5	Cross-Link Density Estimation of PDMS Networks with Precise Consideration of Networks Defects. Macromolecules, 2012, 45, 899-912.	2.2	174
6	Inhomogeneities and Chain Dynamics in Diene Rubbers Vulcanized with Different Cure Systems. Macromolecules, 2010, 43, 4210-4222.	2.2	171
7	1H multiple-quantum nuclear magnetic resonance investigations of molecular order distributions in poly(dimethylsiloxane) networks: Evidence for a linear mixing law in bimodal systems. Journal of Chemical Physics, 2003, 119, 3468-3482.	1.2	168
8	Structure and Dynamics in Columnar Discotic Materials:  A Combined X-ray and Solid-State NMR Study of Hexabenzocoronene Derivatives. Journal of Physical Chemistry B, 2002, 106, 6408-6418.	1.2	163
9	Novel Experimental Approach To Evaluate Fillerâ^'Elastomer Interactions. Macromolecules, 2010, 43, 334-346.	2.2	163
10	Connectivity and Structural Defects in Model Hydrogels: A Combined Proton NMR and Monte Carlo Simulation Study. Macromolecules, 2011, 44, 9666-9674.	2.2	161
11	Glass-Transition Temperature Gradient in Nanocomposites: Evidence from Nuclear Magnetic Resonance and Differential Scanning Calorimetry. Physical Review Letters, 2012, 108, 065702.	2.9	152
12	Biaxial Nematic Phase in a Thermotropic Liquid-Crystalline Side-Chain Polymer. Physical Review Letters, 2004, 92, 125501.	2.9	144
13	A Robust Proton NMR Method to Investigate Hard/Soft Ratios, Crystallinity, and Component Mobility in Polymers. Macromolecular Chemistry and Physics, 2006, 207, 1150-1158.	1.1	144
14	BaBa-xy16: Robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. Journal of Magnetic Resonance, 2011, 212, 204-215.	1.2	143
15	Detection of Surface-Immobilized Components and Their Role in Viscoelastic Reinforcement of Rubber–Silica Nanocomposites. ACS Macro Letters, 2014, 3, 481-485.	2.3	139
16	Polymer Dynamics in PEG-Silica Nanocomposites: Effects of Polymer Molecular Weight, Temperature and Solvent Dilution. Macromolecules, 2012, 45, 4225-4237.	2.2	137
17	Cellulose Solutions in Water Containing Metal Complexesâ€. Macromolecules, 2000, 33, 4094-4107.	2.2	136
18	High Crystallinity and Nature of Crystalâ^'Crystal Phase Transformations in Regioregular Poly(3-hexylthiophene). Macromolecules, 2010, 43, 9401-9410.	2.2	126

#	Article	IF	CITATIONS
19	Chain Order and Cross-Link Density of Elastomers As Investigated by Proton Multiple-Quantum NMR. Macromolecules, 2005, 38, 9650-9660.	2.2	125
20	Mechanical Properties and Cross-Link Density of Styrene–Butadiene Model Composites Containing Fillers with Bimodal Particle Size Distribution. Macromolecules, 2012, 45, 6504-6515.	2.2	118
21	Sulfur-Cured Natural Rubber Elastomer Networks: Correlating Cross-Link Density, Chain Orientation, and Mechanical Response by Combined Techniques. Macromolecules, 2013, 46, 889-899.	2.2	110
22	Entanglement Effects in Elastomers: Macroscopic vs Microscopic Properties. Macromolecules, 2014, 47, 2759-2773.	2.2	109
23	Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers. Journal of Chemical Physics, 2011, 134, 044907.	1.2	105
24	Time-Domain NMR Observation of Entangled Polymer Dynamics: Universal Behavior of Flexible Homopolymers and Applicability of the Tube Model. Macromolecules, 2011, 44, 1549-1559.	2.2	102
25	Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties. Soft Matter, 2012, 8, 4090.	1.2	99
26	Insights in the Antibacterial Action of Poly(methyloxazoline)s with a Biocidal End Group and Varying Satellite Groups. Biomacromolecules, 2008, 9, 1764-1771.	2.6	92
27	Heterogeneity, Segmental and Hydrogen Bond Dynamics, and Aging of Supramolecular Self-Healing Rubber. Macromolecules, 2013, 46, 1841-1850.	2.2	89
28	Spin-diffusion NMR at low field for the study of multiphase solids. Solid State Nuclear Magnetic Resonance, 2008, 34, 125-141.	1.5	87
29	Characterization of Network Structure and Chain Dynamics of Elastomeric Ionomers by Means of ¹ H Low-Field NMR. Macromolecules, 2014, 47, 5655-5667.	2.2	86
30	Coupling and Decoupling of Rotational and Translational Diffusion of Proteins under Crowding Conditions. Journal of the American Chemical Society, 2016, 138, 10365-10372.	6.6	86
31	Intermediate motions as studied by solid-state separated local field NMR experiments. Journal of Chemical Physics, 2008, 128, 104505.	1.2	85
32	Recoupled Polarization Transfer Heteronuclear 1H–13C Multiple-Quantum Correlation in Solids under Ultra-fast MAS. Journal of Magnetic Resonance, 1999, 140, 471-476.	1.2	84
33	Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast. Solid State Nuclear Magnetic Resonance, 2015, 72, 50-63.	1.5	80
34	An Investigation of the Hydrogen-Bonding Structure in Bilirubin by 1H Double-Quantum Magic-Angle Spinning Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2001, 123, 4275-4285.	6.6	78
35	Correlation of crosslink densities using solid state NMR and conventional techniques in peroxide-crosslinked EPDM rubber. Polymer, 2015, 56, 309-317.	1.8	78
36	Influence of Chain Topology on Polymer Dynamics and Crystallization. Investigation of Linear and Cyclic Poly(ε-caprolactone)s by ¹ H Solid-State NMR Methods. Macromolecules, 2011, 44, 2743-2754.	2.2	77

#	Article	IF	Citations
37	Tuning the Properties and Self-Healing Behavior of Ionically Modified Poly(isobutylene- <i>co</i> -isoprene) Rubber. Macromolecules, 2018, 51, 468-479.	2.2	77
38	Recoupled Polarization-Transfer Methods for Solid-State 1H–13C Heteronuclear Correlation in the Limit of Fast MAS. Journal of Magnetic Resonance, 2001, 148, 398-418.	1.2	76
39	Structure of Poly(vinyl alcohol) Cryo-Hydrogels as Studied by Proton Low-Field NMR Spectroscopy. Macromolecules, 2009, 42, 263-272.	2.2	75
40	REDOR-Based Heteronuclear Dipolar Correlation Experiments in Multi-Spin Systems: Rotor-Encoding, Directing, and Multiple Distance and Angle Determination. Solid State Nuclear Magnetic Resonance, 2002, 22, 154-187.	1.5	74
41	Chain Dynamics in Elastomers As Investigated by Proton Multiple-Quantum NMR. Macromolecules, 2006, 39, 3291-3303.	2.2	73
42	Solid-State NMR Approaches to Internal Dynamics of Proteins: From Picoseconds to Microseconds and Seconds. Accounts of Chemical Research, 2013, 46, 2028-2036.	7.6	72
43	Detection of Heterogeneities in Dry and Swollen Polymer Networks by Proton Low-Field NMR Spectroscopy. Journal of the American Chemical Society, 2003, 125, 14684-14685.	6.6	70
44	Hydrogel formation by photocrosslinking of dimethylmaleimide functionalized polyacrylamide. Polymer, 2007, 48, 5599-5611.	1.8	67
45	Use of 29Si and 27Al MAS NMR to study thermal activation of kaolinites from Brazilian Amazon kaolin wastes. Applied Clay Science, 2014, 87, 189-196.	2.6	65
46	Heteronuclear 1H–13C multiple-spin correlation in solid-state nuclear magnetic resonance: Combining rotational-echo double-resonance recoupling and multiple-quantum spectroscopy. Journal of Chemical Physics, 2001, 114, 5707-5728.	1.2	64
47	Solid-State NMR Investigations of Molecular Dynamics in Polyphenylene Dendrimers:Â Evidence of Dense-Shell Packing. Macromolecules, 2002, 35, 10071-10086.	2.2	62
48	MICROSTRUCTURE AND MOLECULAR DYNAMICS OF ELASTOMERS AS STUDIED BY ADVANCED LOW-RESOLUTION NUCLEAR MAGNETIC RESONANCE METHODS. Rubber Chemistry and Technology, 2012, 85, 350-386.	0.6	62
49	Robust NMR Approaches for the Determination of Homonuclear Dipole–Dipole Coupling Constants in Studies of Solid Materials and Biomolecules. ChemPhysChem, 2013, 14, 3000-3014.	1.0	62
50	Swelling Heterogeneities in End-Linked Model Networks:  A Combined Proton Multiple-Quantum NMR and Computer Simulation Study. Macromolecules, 2004, 37, 8556-8568.	2.2	60
51	Artifacts in Transverse Proton NMR Relaxation Studies of Elastomers. Macromolecules, 2005, 38, 1508-1512.	2.2	60
52	Confinement Effects on Chain Dynamics and Local Chain Order in Entangled Polymer Melts. Macromolecules, 2010, 43, 4429-4434.	2.2	58
53	NMR Observation of Entangled Polymer Dynamics: Tube Model Predictions and Constraint Release. Physical Review Letters, 2010, 104, 198305.	2.9	58
54	Memory effect in isothermal crystallization of syndiotactic polypropyleneRole of melt structure and dynamics?. European Physical Journal E, 2007, 23, 91-101.	0.7	57

#	Article	IF	CITATIONS
55	Relaxation-Induced Dipolar Exchange with Recoupling—An MAS NMR Method for Determining Heteronuclear Distances without Irradiating the Second Spin. Journal of Magnetic Resonance, 2000, 145, 161-172.	1.2	55
56	Particle-induced network formation in linear PDMS filled with silica. Polymer, 2009, 50, 5434-5442.	1.8	55
57	Phase Biaxiality in Nematic Liquid Crystalline Side-Chain Polymers of Various Chemical Constitutions. Journal of Physical Chemistry B, 2006, 110, 15680-15688.	1.2	53
58	Time-Domain NMR Observation of Entangled Polymer Dynamics: Analytical Theory of Signal Functions. Macromolecules, 2011, 44, 1560-1569.	2.2	53
59	Dynamics in Crystallites of Poly(Îμ-caprolactone) As Investigated by Solid-State NMR. Macromolecules, 2013, 46, 7818-7825.	2.2	52
60	Structure and swelling of polymer networks: insights from NMR. Soft Matter, 2013, 9, 6587.	1.2	51
61	Local Chain Deformation and Overstrain in Reinforced Elastomers: An NMR Study. Macromolecules, 2013, 46, 5549-5560.	2.2	49
62	1H multiple-quantum nuclear magnetic resonance investigations of molecular order in polymer networks. II. Intensity decay and restricted slow dynamics. Journal of Chemical Physics, 2004, 120, 454-464.	1.2	48
63	Inhomogeneities and local chain stretching in partially swollen networks. Soft Matter, 2013, 9, 6943-6954.	1.2	48
64	Entanglements, Defects, and Inhomogeneities in Nitrile Butadiene Rubbers: Macroscopic versus Microscopic Properties. Macromolecules, 2016, 49, 9004-9016.	2.2	48
65	Hierarchical Sticker and Sticky Chain Dynamics in Self-Healing Butyl Rubber Ionomers. Macromolecules, 2019, 52, 4169-4184.	2.2	48
66	Shape-Persistent Polyphenylene Dendrimersâ€"Restricted Molecular Dynamics from Advanced Solid-State Nuclear Magnetic Resonance Techniques. Advanced Materials, 2001, 13, 752-756.	11.1	47
67	Gelation as Studied by Proton Multiple-Quantum NMR. Macromolecules, 2007, 40, 1555-1561.	2.2	47
68	NMR Reveals Non-Distributed and Uniform Character of Network Chain Dynamics. Macromolecular Rapid Communications, 2007, 28, 1455-1465.	2.0	47
69	Diffusion in Model Networks as Studied by NMR and Fluorescence Correlation Spectroscopy. Macromolecules, 2009, 42, 4681-4689.	2.2	47
70	Determination of Chain Flip Rates in Poly(ethylene) Crystallites by Solid-State Low-Field ¹ H NMR for Two Different Sample Morphologies. Journal of Physical Chemistry B, 2012, 116, 13089-13097.	1.2	47
71	Network Structure and Inhomogeneities of Model and Commercial Polyelectrolyte Hydrogels as Investigated by Low-Field Proton NMR Techniques. Macromolecules, 2014, 47, 4251-4265.	2.2	47
72	Solid State NMR Spectroscopic Investigations of Model Compounds for Imidazole-Based Proton Conductors. Journal of Physical Chemistry B, 2004, 108, 18500-18508.	1.2	46

#	Article	IF	CITATIONS
73	Direct Observation of Millisecond to Second Motions in Proteins by Dipolar CODEX NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 12097-12099.	6.6	45
74	The Application of MAS Recoupling Methods in the Intermediate Motional Regime. Journal of Magnetic Resonance, 2002, 157, 17-30.	1.2	44
75	Natural rubber/clay nanocomposites: Influence of poly(ethylene glycol) on the silicate dispersion and local chain order of rubber network. European Polymer Journal, 2008, 44, 3493-3500.	2.6	44
76	Interplay between Crystallization and Entanglements in the Amorphous Phase of the Crystal-Fixed Polymer Poly(ϵ-caprolactone). Macromolecules, 2018, 51, 5831-5841.	2.2	44
77	Slow motions in microcrystalline proteins as observed by MAS-dependent 15N rotating-frame NMR relaxation. Journal of Magnetic Resonance, 2014, 248, 8-12.	1.2	41
78	Polymer Dynamics of Polybutadiene in Nanoscopic Confinement As Revealed by Field Cycling ¹ H NMR. Macromolecules, 2011, 44, 4017-4021.	2.2	38
79	Dynamics-based assessment of nanoscopic polymer-network mesh structures and their defects. Soft Matter, 2018, 14, 1976-1991.	1.2	38
80	Reorientation phenomena in imidazolium methyl sulfonate as probed by advanced solid-state NMR. Solid State Nuclear Magnetic Resonance, 2003, 24, 150-162.	1.5	37
81	Segmental order in end-linked polymer networks: A Monte Carlo study. European Physical Journal E, 2005, 18, 167-182.	0.7	37
82	Internal protein dynamics on ps to $\hat{1}$ /4s timescales as studied by multi-frequency 15N solid-state NMR relaxation. Journal of Biomolecular NMR, 2013, 57, 219-235.	1.6	37
83	Local Flips and Chain Motion in Polyethylene Crystallites: A Comparison of Melt-Crystallized Samples, Reactor Powders, and Nanocrystals. Macromolecules, 2014, 47, 5163-5173.	2.2	37
84	The Underestimated Effect of Intracrystalline Chain Dynamics on the Morphology and Stability of Semicrystalline Polymers. Macromolecules, 2018, 51, 8377-8385.	2.2	36
85	Large-Scale Diffusion of Entangled Polymers along Nanochannels. ACS Macro Letters, 2015, 4, 561-565.	2.3	35
86	Depercolation of aggregates upon polymer grafting in simplified industrial nanocomposites studied with dielectric spectroscopy. Polymer, 2015, 73, 131-138.	1.8	35
87	An Investigation of Poly(dimethylsiloxane) Chain Dynamics and Order in Its Inclusion Compound withγ-Cyclodextrin by Fast-MAS Solid-State NMR Spectroscopy. Macromolecular Rapid Communications, 2002, 23, 286-291.	2.0	34
88	Effect of excluded volume on segmental orientation correlations in polymer chains. Physical Review E, 2008, 78, 051803.	0.8	34
89	Microsecond motions probed by near-rotary-resonance R1i-15N MAS NMR experiments: the model case of protein overall-rocking in crystals. Journal of Biomolecular NMR, 2018, 71, 53-67.	1.6	34
90	The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 8678-8681.	7.2	33

#	Article	IF	CITATIONS
91	15Nâ^'1H Bond Length Determination in Natural Abundance by Inverse Detection in Fast-MAS Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2002, 124, 10938-10939.	6.6	31
92	Chain Dynamics and Segmental Orientation in Polymer Melts Confined to Nanochannels. Macromolecules, 2016, 49, 244-256.	2.2	30
93	Synthesis and Structural NMR Characterization of Novel PPG/PCL Conetworks Based upon Heterocomplementary Coupling Reactions. Macromolecular Chemistry and Physics, 2018, 219, 1700327.	1.1	30
94	Microscopic Study of Chain Deformation and Orientation in Uniaxially Strained Polymer Networks: NMR Results versus Different Network Models. Macromolecules, 2014, 47, 7597-7611.	2.2	29
95	Gradient Interfaces in SBS and SBS/PS Blends and Their Influence on Morphology Development and Material Properties. Macromolecules, 2009, 42, 5684-5699.	2.2	28
96	Intracrystalline Jump Motion in Poly(ethylene oxide) Lamellae of Variable Thickness: A Comparison of NMR Methods. Macromolecules, 2017, 50, 3890-3902.	2.2	28
97	Low-field NMR studies of polymer crystallization kinetics: Changes in the melt dynamics. Polymer, 2006, 47, 7216-7221.	1.8	27
98	Intermediate motions and dipolar couplings as studied by Lee–Goldburg cross-polarization NMR: Hartmann–Hahn matching profiles. Physical Chemistry Chemical Physics, 2009, 11, 7036.	1.3	27
99	Thermodynamics of Swollen Networks As Reflected in Segmental Orientation Correlations. Macromolecules, 2012, 45, 5513-5523.	2.2	27
100	Studying Twin Samples Provides Evidence for a Unique Structure-Determining Parameter in Simplifed Industrial Nanocomposites. ACS Macro Letters, 2014, 3, 448-452.	2.3	27
101	The Nonâ€effect of Polymerâ€Network Inhomogeneities in Microgel Volume Phase Transitions: Support for the Meanâ€Field Perspective. Macromolecular Chemistry and Physics, 2014, 215, 1116-1133.	1.1	27
102	Opposing Phaseâ€Segregation and Hydrogenâ€Bonding Forces in Supramolecular Polymers. Angewandte Chemie - International Edition, 2017, 56, 13016-13020.	7.2	27
103	Structure, Mechanical Properties, and Dynamics of Polyethylenoxide/Nanoclay Nacre-Mimetic Nanocomposites. Macromolecules, 2020, 53, 1716-1725.	2.2	27
104	Photo-vulcanization using thiol-ene chemistry: Film formation, morphology and network characteristics of UV crosslinked rubber latices. Polymer, 2014, 55, 5584-5595.	1.8	26
105	Competition between crystal growth and intracrystalline chain diffusion determines the lamellar thickness in semicrystalline polymers. Nature Communications, 2022, 13, 119.	5.8	26
106	Sideband Patterns from Rotor-Encoded Longitudinal Magnetization in MAS Recoupling Experiments. Journal of Magnetic Resonance, 2000, 146, 140-156.	1.2	25
107	Cellulose in New Metal-Complexing Solvents. 2. Semidilute Behavior in Cd-tren. Macromolecules, 2001, 34, 5587-5598.	2.2	25
108	Analysis of the spatial structure of rigid polyphenylene dendrimers by small-angle neutron scattering. Journal of Luminescence, 2005, 111, 225-238.	1.5	25

#	Article	IF	Citations
109	Direct Observation of Interphase Composition in Block Copolymers. Macromolecules, 2008, 41, 9187-9191.	2.2	25
110	Reduced-mobility layers with high internal mobility in poly(ethylene oxide)–silica nanocomposites. Journal of Chemical Physics, 2017, 146, 203303.	1.2	25
111	Chemical Shift-Related Artifacts in NMR Determinations of Proton Residual Dipolar Couplings in Elastomers. Macromolecules, 2005, 38, 4040-4042.	2.2	24
112	Molecular Motion of Isolated Linear Alkanes in Nanochannels. Journal of Physical Chemistry B, 2005, 109, 23285-23294.	1.2	24
113	Crystallization Kinetics of Poly(dimethylsiloxane) Molecular-Weight Blendsâ€"Correlation with Local Chain Order in the Melt?. Macromolecular Chemistry and Physics, 2007, 208, 2066-2075.	1.1	24
114	Complex Morphology of the Intermediate Phase in Block Copolymers and Semicrystalline Polymers As Revealed by ¹ H NMR Spin Diffusion Experiments. Macromolecules, 2017, 50, 8598-8610.	2.2	24
115	Connectivity Defects and Collective Assemblies in Model Metalloâ€Supramolecular Dualâ€Network Hydrogels. Macromolecular Chemistry and Physics, 2020, 221, 1900400.	1.1	24
116	Study of Molecular Interactions and Dynamics in Thin Silica Surface Layers by Proton Solid-State NMR Spectroscopy. Chemistry of Materials, 2004, 16, 4071-4079.	3.2	23
117	NMR Observations of Entangled Polymer Dynamics: Focus on Tagged Chain Rotational Dynamics and Confirmation from a Simulation Model. Macromolecules, 2014, 47, 256-268.	2.2	23
118	Transient binding accounts for apparent violation of the generalized Stokes–Einstein relation in crowded protein solutions. Physical Chemistry Chemical Physics, 2016, 18, 18006-18014.	1.3	23
119	Initial Solvent-Driven Nonequilibrium Effect on Structure, Properties, and Dynamics of Polymer Nanocomposites. Physical Review Letters, 2019, 123, 167801.	2.9	23
120	Self-healing and reprocessable bromo butylrubber based on combined ionic cluster formation and hydrogen bonding. Polymer Chemistry, 2020, 11, 1188-1197.	1.9	23
121	Lamellar Liquid Single Crystal Hydrogels:Â Synthesis and Investigation of Anisotropic Water Diffusion and Swelling. Macromolecules, 2005, 38, 9772-9782.	2.2	22
122	NMR study of interphase structure in layered polymer morphologies with mobility contrast: disorder and confinement effects vs. dynamic heterogeneities. Colloid and Polymer Science, 2014, 292, 1825-1839.	1.0	22
123	Acyl Chain Disorder and Azelaoyl Orientation in Lipid Membranes Containing Oxidized Lipids. Langmuir, 2016, 32, 6524-6533.	1.6	22
124	Identifying the Role of Primary and Secondary Interactions on the Mechanical Properties and Healing of Densely Branched Polyimides. Macromolecules, 2018, 51, 8333-8345.	2.2	22
125	Heteronuclear Double-Quantum MAS NMR Spectroscopy in Dipolar Solids. Journal of Magnetic Resonance, 1999, 139, 287-301.	1.2	21
126	High-Sensitivity2H NMR in Solids by1H Detection. Journal of the American Chemical Society, 2001, 123, 7168-7169.	6.6	21

#	Article	IF	Citations
127	MQ NMR and SPME Analysis of Nonlinearity in the Degradation of a Filled Silicone Elastomer. Journal of Physical Chemistry B, 2010, 114, 9729-9736.	1.2	21
128	NMR-Detected Brownian Dynamics of \hat{l}_{\pm} B-Crystallin over a Wide Range of Concentrations. Biophysical Journal, 2015, 108, 98-106.	0.2	21
129	Methyl groups as local probes for polymer dynamics as investigated by double-quantum magic-angle spinning NMR spectroscopy. Chemical Physics Letters, 2002, 362, 331-340.	1.2	20
130	Recoupled separated-local-field experiments and applications to study intermediate-regime molecular motions. Journal of Magnetic Resonance, 2012, 221, 85-96.	1.2	20
131	Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties. Soft Matter, 2014, 10, 6147-6160.	1.2	20
132	Microscopic observation of the segmental orientation autocorrelation function for entangled and constrained polymer chains. Journal of Chemical Physics, 2017, 146, .	1.2	20
133	Time-Domain NMR Observation of Entangled Polymer Dynamics: Focus on All Tube-Model Regimes, Chain Center, and Matrix Effects. Macromolecules, 2018, 51, 4108-4117.	2.2	20
134	Terminal Flow of Cluster-Forming Supramolecular Polymer Networks: Single-Chain Relaxation or Micelle Reorganization?. Physical Review Letters, 2020, 125, 127801.	2.9	20
135	Study on Homogeneity in Sulfur Cross-Linked Network Structures of Isoprene Rubber by TD-NMR and AFM – Zinc Stearate System. Macromolecules, 2020, 53, 8438-8449.	2.2	20
136	Spatial inhomogeneity, interfaces and complex vitrification kinetics in a network forming nanocomposite. Soft Matter, 2021, 17, 2775-2790.	1.2	20
137	Rheology, Sticky Chain, and Sticker Dynamics of Supramolecular Elastomers Based on Cluster-Forming Telechelic Linear and Star Polymers. Macromolecules, 2021, 54, 5065-5076.	2.2	20
138	On the Immobilized Polymer Fraction in Attractive Nanocomposites: <i>T</i> _g Gradient versus Interfacial Layer. Macromolecules, 2021, 54, 10289-10299.	2.2	20
139	Breakdown in the efficiency factor of the mixed Magic Sandwich Echo: A novel NMR probe for slow motions. Chemical Physics Letters, 2011, 516, 106-110.	1.2	19
140	Proton NMR spin-diffusion studies of PS-PB block copolymers at low field: two- vs three-phase model and recalibration of spin-diffusion coefficients. Polymer Journal, 2012, 44, 748-756.	1.3	19
141	The "long tail―of the protein tumbling correlation function: observation by 1H NMR relaxometry in a wide frequency and concentration range. Journal of Biomolecular NMR, 2015, 63, 403-415.	1.6	19
142	A T-Shaped Amphiphilic Molecule Forms Closed Vesicles in Water and Bicelles in Mixtures with a Membrane Lipid. Journal of Physical Chemistry B, 2012, 116, 4871-4878.	1.2	18
143	Moderate MAS enhances local 1 H spin exchange and spin diffusion. Journal of Magnetic Resonance, 2015, 260, 28-37.	1.2	18
144	The relation of the X-ray B-factor to protein dynamics: insights from recent dynamic solid-state NMR data. Journal of Biomolecular Structure and Dynamics, 2012, 30, 617-627.	2.0	16

#	Article	IF	CITATIONS
145	Dendritic Domains with Hexagonal Symmetry Formed by Xâ€Shaped Bolapolyphiles in Lipid Membranes. Chemistry - A European Journal, 2015, 21, 8840-8850.	1.7	15
146	Critical fluctuations and static inhomogeneities in polymer gel volume phase transitions. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1112-1122.	2.4	15
147	Applications of Solid-State NMR Spectroscopy for the Study of Lipid Membranes with Polyphilic Guest (Macro)Molecules. Polymers, 2016, 8, 439.	2.0	15
148	Pharmaceutical nanocrystals confined in porous host systems – interfacial effects and amorphous interphases. Chemical Communications, 2016, 52, 4466-4469.	2.2	15
149	Moisture-mediated self-healing kinetics and molecular dynamics in modified polyurethane urea polymers. Polymer, 2018, 151, 125-135.	1.8	15
150	NMR Studies on the Phase-Resolved Evolution of Cross-Link Densities in Thermo-Oxidatively Aged Elastomer Blends. Macromolecules, 2020, 53, 11166-11177.	2.2	15
151	Microscopic State of Polymer Network Chains upon Swelling and Deformation. Macromolecules, 2019, 52, 5042-5053.	2.2	14
152	Defect-controlled softness, diffusive permeability, and mesh-topology of metallo-supramolecular hydrogels. Soft Matter, 2022, 18, 1071-1081.	1.2	13
153	Signal loss in 1D magic-angle spinning exchange NMR (CODEX): radio-frequency limitations and intermediate motions. Physical Chemistry Chemical Physics, 2009, 11, 7022.	1.3	11
154	Real-Time Observation of Polymer Network Formation by Liquid- and Solid-State NMR Revealing Multistage Reaction Kinetics. Journal of Physical Chemistry B, 2012, 116, 7566-7574.	1.2	11
155	Temperature-Dependent In-Plane Structure Formation of an X-Shaped Bolapolyphile within Lipid Bilayers. Langmuir, 2015, 31, 2839-2850.	1.6	11
156	The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 8814-8817.	1.6	11
157	Comment on "Chain Entanglements in Polyethylene Melts. Why Is It Studied Again?― Macromolecules, 2013, 46, 5090-5093.	2.2	10
158	Avoiding Bias Effects in NMR Experiments for Heteronuclear Dipole–Dipole Coupling Determinations: Principles and Application to Organic Semiconductor Materials. ChemPhysChem, 2013, 14, 3146-3155.	1.0	10
159	Self-Assembly of X-Shaped Bolapolyphiles in Lipid Membranes: Solid-State NMR Investigations. Langmuir, 2016, 32, 673-682.	1.6	10
160	Entrapped Styrene Butadiene Polymer Chains by Sol–Gel-Derived Silica Nanoparticles with Hierarchical Raspberry Structures. Journal of Physical Chemistry B, 2018, 122, 2010-2022.	1.2	10
161	Orientation-dependent proton double-quantum NMR build-up function for soft materials with anisotropic mobility. Solid State Nuclear Magnetic Resonance, 2017, 82-83, 22-28.	1.5	9
162	Segmental dynamics of polyethylene-alt-propylene studied by NMR spin echo techniques. Journal of Chemical Physics, 2017, 146, 224901.	1.2	9

#	Article	IF	Citations
163	Liquid–liquid phase coexistence in lipid membranes observed by natural abundance ¹ H– ¹³ C solid-state NMR. Physical Chemistry Chemical Physics, 2018, 20, 9751-9754.	1.3	9
164	Control of Particle Dispersion with Autophobic Dewetting in Polymer Nanocomposites. Macromolecules, 2020, 53, 4836-4844.	2.2	9
165	Asymmetric Co-unit Inclusion in Statistical Copolyesters. Macromolecules, 2021, 54, 835-845.	2.2	9
166	Swelling and Residual Bond Orientations of Polymer Model Gels: The Entanglement-Free Limit. Macromolecules, 2022, 55, 5997-6014.	2.2	9
167	Segmental Order Parameters and Swelling in Polymer Networks. Macromolecular Symposia, 2010, 291-292, 251-257.	0.4	8
168	Chain Mobility in Crosslinked EPDM Rubbers. Comparison of ^{1 < /sup>H NMR T₂Relaxometry and Double-Quantum ^{1 < /sup>H NMR. ACS Symposium Series, 2011, , 207-220.}}	0.5	7
169	A double-component Anderson–Weiss approach for describing NMR signals of mobile SIn units: Application to constant-time DIPSHIFT experiments. Journal of Magnetic Resonance, 2014, 248, 115-125.	1.2	7
170	Dynamic Heterogeneity of Fillerâ€Associated Interphases in Polymer Nanocomposites. Macromolecular Rapid Communications, 2021, 42, e2100061.	2.0	7
171	Cholesterol-like effects of a fluorotelomer alcohol incorporated in phospholipid membranes. Scientific Reports, 2018, 8, 2154.	1.6	6
172	Comment on "Turning Vulcanized Natural Rubber into a Self-Healing Polymer: Effect of the Disulfide/Polysulfide Ratio― ACS Sustainable Chemistry and Engineering, 2017, 5, 11125-11126.	3.2	5
173	Multiple-Quantum NMR Studies of Anisotropic Polymer Chain Dynamics. , 2018, , 755-781.		5
174	Structure and Dynamics in a Polymorphic Nanophase-Separated Stiff Comblike Polymer. Macromolecules, 2019, 52, 6943-6952.	2.2	5
175	Multiple-Quantum NMR Studies of Anisotropic Polymer Chain Dynamics. , 2017, , 1-28.		5
176	Design, Synthesis and Characterization of Vitrimers with Low Topology Freezing Transition Temperature. Polymers, 2022, 14, 2456.	2.0	5
177	Comparison of double-quantum NMR normalization schemes to measure homonuclear dipole-dipole interactions. Journal of Chemical Physics, 2014, 141, 064201.	1.2	4
178	Opposing Phaseâ€Segregation and Hydrogenâ€Bonding Forces in Supramolecular Polymers. Angewandte Chemie, 2017, 129, 13196-13200.	1.6	4
179	Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure. Journal of Physical Chemistry B, 2021, 125, 3398-3408.	1.2	4
180	Phase Biaxiality in Nematic Liquid Crystals. , 2007, , 141-170.		4

#	Article	IF	CITATIONS
181	Quantitative NMR study of heat-induced aggregation of eye-lens crystallin proteins under crowding conditions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 1055-1061.	1.1	3
182	Intracrystalline Dynamics in Oligomerâ€Diluted Poly(Ethylene Oxide). Macromolecular Chemistry and Physics, 2020, 221, 1900393.	1.1	3
183	Chain dynamics in partially crossâ€linked polyethylene by combined rheology and NMR â€based molecular rheology. Journal of Polymer Science, 0, , .	2.0	3
184	NMRâ€Based Cross‣ink Densities in EPDM and EPDM/ULDPE Blend Materials and Correlation with Mechanical Properties. Macromolecular Materials and Engineering, 2022, 307, .	1.7	3
185	Relaxation-induced dipolar exchange with recoupling (RIDER) distortions in CODEX experiments. Magnetic Resonance, 2020, 1, 247-259.	0.8	2
186	Oxidized Lipids in Model Membranes: Atomistic Details from Solid-State NMR Experiments and MD Simulations. Biophysical Journal, 2016, 110, 584a.	0.2	1
187	Polymer Applications of NMR., 2017,, 695-708.		1
188	Trajectory-Based Approach for the Analysis of CODEX Solid-State Exchange Experiments in the Slow and Intermediate Motion Regime: Comparison of Experiment, Simulation, and Analytical Treatment. Journal of Physical Chemistry C, 2021, 125, 6839-6850.	1.5	1
189	Efficient polynomial analysis of magic-angle spinning sidebands and application to order parameter determination in anisotropic samples. Magnetic Resonance, 2021, 2, 589-606.	0.8	1
190	Polymer Networks for Enrichment of Calcium Ions. Polymers, 2021, 13, 3506.	2.0	1
191	Multiple-Quantum NMR Studies of Anisotropic Polymer Chain Dynamics. , 2016, , 1-28.		1
192	Polymer Composites with Molecular Fillers: Microscopic Views into Supramolecular Reinforcement. Advances in Dielectrics, 2022, , 163-185.	1.2	1
193	Solid State NMR Investigations of Lipid Bilayers in Interaction with Amphiphilic Triblock Copolymers. Biophysical Journal, 2016, 110, 246a.	0.2	o