Eugene Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5385165/publications.pdf

Version: 2024-02-01

74 papers 6,009 citations

94433 37 h-index 76900 74 g-index

75 all docs

75 docs citations

75 times ranked 3276 citing authors

#	Article	IF	CITATIONS
1	Optical Images of an Exosolar Planet 25 Light-Years from Earth. Science, 2008, 322, 1345-1348.	12.6	701
2	The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3444-3455.	4.4	393
3	The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au. Astronomical Journal, 2019, 158, 13.	4.7	270
4	BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS. Astrophysical Journal, 2016, 817, 90.	4.5	219
5	HOW EMPTY ARE DISK GAPS OPENED BY GIANT PLANETS?. Astrophysical Journal, 2014, 782, 88.	4.5	215
6	MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND. Astrophysical Journal, 2014, 797, 95.	4.5	208
7	WEAK TURBULENCE IN THE HD 163296 PROTOPLANETARY DISK REVEALED BY ALMA CO OBSERVATIONS. Astrophysical Journal, 2015, 813, 99.	4.5	208
8	A Three-dimensional View of Turbulence: Constraints on Turbulent Motions in the HD 163296 Protoplanetary Disk Using DCO ⁺ . Astrophysical Journal, 2017, 843, 150.	4.5	208
9	TO COOL IS TO ACCRETE: ANALYTIC SCALINGS FOR NEBULAR ACCRETION OF PLANETARY ATMOSPHERES. Astrophysical Journal, 2015, 811, 41.	4.5	166
10	Multiple Disk Gaps and Rings Generated by a Single Super-Earth. Astrophysical Journal, 2017, 843, 127.	4.5	157
11	Inside-out evacuation of transitional protoplanetary discs by the magneto-rotational instability. Nature Physics, 2007, 3, 604-608.	16.7	130
12	The Eccentric Cavity, Triple Rings, Two-armed Spirals, and Double Clumps of the MWC 758 Disk. Astrophysical Journal, 2018, 860, 124.	4.5	126
13	SURFACE LAYER ACCRETION IN CONVENTIONAL AND TRANSITIONAL DISKS DRIVEN BY FAR-ULTRAVIOLET IONIZATION. Astrophysical Journal, 2011, 735, 8.	4.5	115
14	<i>î²</i> PICTORIS' INNER DISK IN POLARIZED LIGHT AND NEW ORBITAL PARAMETERS FOR <i>β</i> PICTORIS <i>b</i> Astrophysical Journal, 2015, 811, 18.	4.5	108
15	GAP OPENING IN 3D: SINGLE-PLANET GAPS. Astrophysical Journal, 2016, 832, 105.	4.5	107
16	Catastrophic evaporation of rocky planets. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2294-2309.	4.4	105
17	CORRELATIONS BETWEEN COMPOSITIONS AND ORBITS ESTABLISHED BY THE GIANT IMPACT ERA OF PLANET FORMATION. Astrophysical Journal, 2016, 822, 54.	4.5	101
18	AN M DWARF COMPANION AND ITS INDUCED SPIRAL ARMS IN THE HD 100453 PROTOPLANETARY DISK. Astrophysical Journal Letters, 2016, 816, L12.	8.3	96

#	Article	IF	CITATIONS
19	Magnetospheric Truncation, Tidal Inspiral, and the Creation of Short-period and Ultra-short-period Planets. Astrophysical Journal, 2017, 842, 40.	4.5	95
20	Dynamical Constraints on the HR 8799 Planets with GPI. Astronomical Journal, 2018, 156, 192.	4.7	95
21	ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS. Astrophysical Journal, 2015, 812, 94.	4.5	92
22	Multiple Disk Gaps and Rings Generated by a Single Super-Earth. II. Spacings, Depths, and Number of Gaps, with Application to Real Systems. Astrophysical Journal, 2018, 866, 110.	4.5	91
23	SPIRAL ARMS IN GRAVITATIONALLY UNSTABLE PROTOPLANETARY DISKS AS IMAGED IN SCATTERED LIGHT. Astrophysical Journal Letters, 2015, 812, L32.	8.3	89
24	SURFACE LAYER ACCRETION IN TRANSITIONAL AND CONVENTIONAL DISKS: FROM POLYCYCLIC AROMATIC HYDROCARBONS TO PLANETS. Astrophysical Journal, 2011, 727, 2.	4.5	87
25	MILLIMETER EMISSION STRUCTURE IN THE FIRST ALMA IMAGE OF THE AU Mic DEBRIS DISK. Astrophysical Journal Letters, 2013, 762, L21.	8.3	84
26	A metallicity recipe for rocky planets. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1471-1483.	4.4	82
27	HOW SPIRALS AND GAPS DRIVEN BY COMPANIONS IN PROTOPLANETARY DISKS APPEAR IN SCATTERED LIGHT AT ARBITRARY VIEWING ANGLES. Astrophysical Journal, 2016, 826, 75.	4.5	81
28	FAST RADIAL FLOWS IN TRANSITION DISK HOLES. Astrophysical Journal, 2014, 782, 62.	4.5	74
29	A class of warm Jupiters with mutually inclined, apsidally misaligned close friends. Science, 2014, 346, 212-216.	12.6	73
30	SIGNATURES OF GRAVITATIONAL INSTABILITY IN RESOLVED IMAGES OF PROTOSTELLAR DISKS. Astrophysical Journal, 2016, 823, 141.	4.5	72
31	The Degree of Alignment between Circumbinary Disks and Their Binary Hosts. Astrophysical Journal, 2019, 883, 22.	4.5	69
32	A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES. Astrophysical Journal, 2016, 827, 125.	4.5	67
33	Debris Disk Results from the Gemini Planet Imager Exoplanet Survey's Polarimetric Imaging Campaign. Astronomical Journal, 2020, 160, 24.	4.7	64
34	FROM DUST TO PLANETESIMALS: CRITERIA FOR GRAVITATIONAL INSTABILITY OF SMALL PARTICLES IN GAS. Astrophysical Journal, 2013, 764, 20.	4.5	58
35	Save the Planet, Feed the Star: How Super-Earths Survive Migration and Drive Disk Accretion. Astrophysical Journal, 2017, 839, 100.	4.5	57
36	Secular dynamics of an exterior test particle: the inverse Kozai and other eccentricity–inclination resonances. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4855-4869.	4.4	53

#	Article	IF	Citations
37	TWO TRANSITING LOW DENSITY SUB-SATURNS FROM K2. Astrophysical Journal, 2016, 818, 36.	4.5	50
38	The Sizes and Depletions of the Dust and Gas Cavities in the Transitional Disk J160421.7-213028. Astrophysical Journal, 2017, 836, 201.	4.5	50
39	Stellar Winds and Dust Avalanches in the AU Mic Debris Disk. Astrophysical Journal, 2017, 848, 4.	4.5	46
40	The Mass of Stirring Bodies in the AU Mic Debris Disk Inferred from Resolved Vertical Structure. Astrophysical Journal, 2019, 875, 87.	4.5	43
41	GEMINI PLANET IMAGER OBSERVATIONS OF THE AU MICROSCOPII DEBRIS DISK: ASYMMETRIES WITHIN ONE ARCSECOND. Astrophysical Journal Letters, 2015, 811, L19.	8.3	41
42	Circumplanetary Disk Dynamics in the Isothermal and Adiabatic Limits. Astrophysical Journal, 2019, 887, 152.	4.5	40
43	GRAVITO-TURBULENT DISKS IN THREE DIMENSIONS: TURBULENT VELOCITIES VERSUS DEPTH. Astrophysical Journal, 2014, 789, 34.	4.5	39
44	Dust dynamics in 2D gravito-turbulent discs. Monthly Notices of the Royal Astronomical Society, 2016, 459, 982-998.	4.4	38
45	RESOLVED MILLIMETER-WAVELENGTH OBSERVATIONS OF DEBRIS DISKS AROUND SOLAR-TYPE STARS. Astrophysical Journal, 2016, 816, 27.	4.5	37
46	Obliquity Constraints on an Extrasolar Planetary-mass Companion. Astronomical Journal, 2020, 159, 181.	4.7	37
47	FAST MODES AND DUSTY HORSESHOES IN TRANSITIONAL DISKS. Astrophysical Journal Letters, 2015, 798, L25.	8.3	33
48	BRINGING "THE MOTH―TO LIGHT: A PLANET-SCULPTING SCENARIO FOR THE HD 61005 DEBRIS DISK. Astronomical Journal, 2016, 152, 85.	4.7	33
49	A balanced budget view on forming giant planets by pebble accretion. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4338-4354.	4.4	32
50	The end of runaway: how gap opening limits the final masses of gas giants. Monthly Notices of the Royal Astronomical Society, 2019, 487, 681-690.	4.4	32
51	The First Habitable-zone Earth-sized Planet from TESS. II. Spitzer Confirms TOI-700 d. Astronomical Journal, 2020, 160, 117.	4.7	29
52	CONFIRMING THE PRIMARILY SMOOTH STRUCTURE OF THE VEGA DEBRIS DISK AT MILLIMETER WAVELENGTHS. Astrophysical Journal, 2012, 750, 82.	4.5	28
53	Direct Imaging of the HD 35841 Debris Disk: A Polarized Dust Ring from Gemini Planet Imager and an Outer Halo from HST/STIS. Astronomical Journal, 2018, 156, 47.	4.7	28
54	Optically thin core accretion: how planets get their gas in nearly gas-free discs. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2199-2208.	4.4	27

#	Article	IF	Citations
55	The Origin of the Young Stars in the Nucleus of M31. Astrophysical Journal, 2007, 668, 236-244.	4.5	26
56	Dynamical Evidence of a Spiral Arm–driving Planet in the MWC 758 Protoplanetary Disk. Astrophysical Journal Letters, 2020, 898, L38.	8.3	24
57	An ALMA Survey of \hat{l} » Orionis Disks: From Supernovae to Planet Formation. Astronomical Journal, 2020, 160, 248.	4.7	23
58	A Decade of MWC 758 Disk Images: Where Are the Spiral-arm-driving Planets?. Astrophysical Journal Letters, 2018, 857, L9.	8.3	22
59	Heavy-metal Jupiters by major mergers: metallicity versus mass for giant planets. Monthly Notices of the Royal Astronomical Society, 2020, 498, 680-688.	4.4	21
60	A Coplanar Circumbinary Protoplanetary Disk in the TWA 3 Triple M Dwarf System. Astrophysical Journal, 2021, 912, 6.	4.5	21
61	A likely flyby of binary protostar Z CMa caught in action. Nature Astronomy, 2022, 6, 331-338.	10.1	21
62	Sub-Neptune formation: the view from resonant planets. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4192-4209.	4.4	20
63	The Gemini Planet Imager View of the HD 32297 Debris Disk. Astronomical Journal, 2020, 159, 251.	4.7	19
64	Collisional Particle Disks. Astrophysical Journal, 2007, 656, 524-533.	4.5	18
65	Breaking the centrifugal barrier to giant planet contraction by magnetic disc braking. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 491, L34-L39.	3.3	18
66	As the Worlds Turn: Constraining Spin Evolution in the Planetary-mass Regime. Astrophysical Journal, 2020, 905, 37.	4.5	17
67	Obliquity Constraints on the Planetary-mass Companion HD 106906 b. Astronomical Journal, 2021, 162, 217.	4.7	15
68	The endgame of gas giant formation: accretion luminosity and contraction post-runaway. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4334-4343.	4.4	14
69	Resolving Structure in the Debris Disk around HD 206893 with ALMA. Astrophysical Journal, 2021, 917, 5.	4.5	13
70	Primordial obliquities of brown dwarfs and super-Jupiters from fragmenting gravito-turbulent discs. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5187-5194.	4.4	12
71	Sculpting Eccentric Debris Disks with Eccentric Gas Rings. Astrophysical Journal, 2019, 883, 68.	4.5	9
72	Mysterious Dust-emitting Object Orbiting TIC 400799224. Astronomical Journal, 2021, 162, 299.	4.7	6

#	Article	IF	CITATIONS
73	Chondrules from high-velocity collisions: thermal histories and the agglomeration problem. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3297-3308.	4.4	4
74	Testing planet formation from the ultraviolet to the millimetre. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1657-1670.	4.4	4