Jed T Elison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5385110/publications.pdf

Version: 2024-02-01

172457 123424 4,489 61 29 61 citations h-index g-index papers 62 62 62 4742 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Early brain development in infants at high risk for autism spectrum disorder. Nature, 2017, 542, 348-351.	27.8	808
2	Differences in White Matter Fiber Tract Development Present From 6 to 24 Months in Infants With Autism. American Journal of Psychiatry, 2012, 169, 589-600.	7.2	555
3	Behavioral, cognitive, and adaptive development in infants with autism spectrum disorder in the first 2Âyears of life. Journal of Neurodevelopmental Disorders, 2015, 7, 24.	3.1	265
4	Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Science Translational Medicine, 2017, 9, .	12.4	264
5	The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development. NeuroImage, 2019, 185, 891-905.	4.2	234
6	White Matter Microstructure and Atypical Visual Orienting in 7-Month-Olds at Risk for Autism. American Journal of Psychiatry, 2013, 170, 899-908.	7.2	228
7	Increased Extra-axial Cerebrospinal Fluid in High-Risk Infants Who Later Develop Autism. Biological Psychiatry, 2017, 82, 186-193.	1.3	173
8	Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain, 2015, 138, 2046-2058.	7.6	169
9	Longitudinal patterns of repetitive behavior in toddlers with autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2014, 55, 945-953.	5.2	132
10	Neural circuitry at age $6\hat{A}$ months associated with later repetitive behavior and sensory responsiveness in autism. Molecular Autism, 2017, 8, 8.	4.9	111
11	Joint Attention and Brain Functional Connectivity in Infants and Toddlers. Cerebral Cortex, 2017, 27, 1709-1720.	2.9	103
12	The journey to autism: Insights from neuroimaging studies of infants and toddlers. Development and Psychopathology, 2018, 30, 479-495.	2.3	100
13	Associations between white matter microstructure and infants' working memory. Neurolmage, 2013, 64, 156-166.	4.2	90
14	Repetitive Behavior in 12-Month-Olds Later Classified With Autism Spectrum Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2014, 53, 1216-1224.	0.5	84
15	Frontolimbic neural circuitry at 6Âmonths predicts individual differences in joint attention at 9Âmonths. Developmental Science, 2013, 16, 186-197.	2.4	77
16	Neurodevelopmental heterogeneity and computational approaches for understanding autism. Translational Psychiatry, 2019, 9, 63.	4.8	77
17	Subcortical Brain and Behavior Phenotypes Differentiate Infants With Autism Versus Language Delay. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 664-672.	1.5	71
18	Walking, Gross Motor Development, and Brain Functional Connectivity in Infants and Toddlers. Cerebral Cortex, 2018, 28, 750-763.	2.9	65

#	Article	IF	CITATIONS
19	Naturalistic Language Recordings Reveal "Hypervocal―Infants at High Familial Risk for Autism. Child Development, 2018, 89, e60-e73.	3.0	59
20	Age trends in visual exploration of social and nonsocial information in children with autism. Research in Autism Spectrum Disorders, 2012, 6, 842-851.	1.5	53
21	Restricted and Repetitive Behavior and Brain Functional Connectivity in Infants at Risk for Developing Autism Spectrum Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 50-61.	1.5	53
22	Sleep Onset Problems and Subcortical Development in Infants Later Diagnosed With Autism Spectrum Disorder. American Journal of Psychiatry, 2020, 177, 518-525.	7.2	52
23	Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data. Developmental Cognitive Neuroscience, 2015, 12, 123-133.	4.0	51
24	Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness. PLoS ONE, 2017, 12, e0188122.	2.5	51
25	A longitudinal study of parentâ€reported sensory responsiveness in toddlers atâ€risk for autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2019, 60, 314-324.	5.2	50
26	An Examination of Recording Accuracy and Precision From Eye Tracking Data From Toddlerhood to Adulthood. Frontiers in Psychology, 2018, 9, 803.	2.1	48
27	Splenium development and early spoken language in human infants. Developmental Science, 2017, 20, e12360.	2.4	36
28	Early language exposure supports later language skills in infants with and without autism. Autism Research, 2019, 12, 1784-1795.	3.8	36
29	A quantitative measure of restricted and repetitive behaviors for early childhood. Journal of Neurodevelopmental Disorders, 2016, 8, 27.	3.1	32
30	Human milk 3'-Sialyllactose is positively associated with language development during infancy. American Journal of Clinical Nutrition, 2021, 114, 588-597.	4.7	29
31	Emerging ethical issues raised by highly portable MRI research in remote and resource-limited international settings. NeuroImage, 2021, 238, 118210.	4.2	28
32	Pre-symptomatic intervention for autism spectrum disorder (ASD): defining a research agenda. Journal of Neurodevelopmental Disorders, 2021, 13, 49.	3.1	28
33	Subcortical Brain Development in Autism and Fragile X Syndrome: Evidence for Dynamic, Age- and Disorder-Specific Trajectories in Infancy. American Journal of Psychiatry, 2022, 179, 562-572.	7.2	28
34	The Importance of Temperament for Understanding Early Manifestations of Autism Spectrum Disorder in High-Risk Infants. Journal of Autism and Developmental Disorders, 2019, 49, 2849-2863.	2.7	25
35	Potential Risk Factors for the Development of Self-Injurious Behavior among Infants at Risk for Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2017, 47, 1403-1415.	2.7	23
36	Machine learning accurately classifies age of toddlers based on eye tracking. Scientific Reports, 2019, 9, 6255.	3.3	23

#	Article	IF	CITATIONS
37	Variability in Responding to Joint Attention Cues in the First Year is Associated With Autism Outcome. Journal of the American Academy of Child and Adolescent Psychiatry, 2022, 61, 413-422.	0.5	17
38	Infant Visual Brain Development and Inherited Genetic Liability in Autism. American Journal of Psychiatry, 2022, 179, 573-585.	7.2	14
39	Safety and Feasibility of Transcranial Magnetic Stimulation as an Exploratory Assessment of Corticospinal Connectivity in Infants After Perinatal Brain Injury: An Observational Study. Physical Therapy, 2019, 99, 689-700.	2.4	13
40	Longitudinal change in restricted and repetitive behaviors from 8-36 months. Journal of Neurodevelopmental Disorders, 2021, 13, 7.	3.1	12
41	Infants' gaze exhibits a fractal structure that varies by age and stimulus salience. Scientific Reports, 2020, 10, 17216.	3.3	10
42	Towards a Data-Driven Approach to Screen for Autism Risk at 12 Months of Age. Journal of the American Academy of Child and Adolescent Psychiatry, 2021, 60, 968-977.	0.5	9
43	Filtering respiratory motion artifact from resting state fMRI data in infant and toddler populations. NeuroImage, 2022, 247, 118838.	4.2	9
44	A voxel-wise assessment of growth differences in infants developing autism spectrum disorder. NeuroImage: Clinical, 2021, 29, 102551.	2.7	8
45	Genetic architecture of reciprocal social behavior in toddlers: Implications for heterogeneity in the early origins of autism spectrum disorder. Development and Psychopathology, 2020, 32, 1190-1205.	2.3	8
46	Infants' abilities to respond to cues for joint attention vary by family socioeconomic status. Infancy, 2021, 26, 204-222.	1.6	8
47	Real-time motion monitoring improves functional MRI data quality in infants. Developmental Cognitive Neuroscience, 2022, 55, 101116.	4.0	7
48	Resting-state functional connectivity identifies individuals and predicts age in 8-to-26-month-olds. Developmental Cognitive Neuroscience, 2022, 56, 101123.	4.0	7
49	Restricted, Repetitive, and Reciprocal Social Behavior in Toddlers Born Small for Gestation Duration. Journal of Pediatrics, 2018, 200, 118-124.e9.	1.8	6
50	Cost-Effectiveness of MRI-Based Identification of Presymptomatic Autism in a High-Risk Population. Frontiers in Psychiatry, 2020, 11, 60.	2.6	6
51	Diagnostic shifts in autism spectrum disorder can be linked to the fuzzy nature of the diagnostic boundary: a dataâ€driven approach. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 1236-1245.	5.2	6
52	Examining criterion-oriented validity of the Repetitive Behavior Scales for Early Childhood (RBS-EC) and the Video-Referenced Rating of Reciprocal Social Behavior (vrRSB). Development and Psychopathology, 2020, 32, 779-789.	2.3	5
53	Phenoscreening: a developmental approach to research domain criteriaâ€motivated sampling. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 884-894.	5.2	5
54	Semi-supervised VAE-GAN for Out-of-Sample Detection Applied to MRI Quality Control. Lecture Notes in Computer Science, 2019, , 127-136.	1.3	5

#	Article	IF	CITATIONS
55	Emerging Evidence for Putative Neural Networks and Antecedents of Pediatric Anxiety in the Fetal, Neonatal, and Infant Periods. Biological Psychiatry, 2021, 89, 672-680.	1.3	4
56	Cataloguing and characterizing interests in typically developing toddlers and toddlers who develop ASD. Autism Research, 2021, 14, 1710-1723.	3.8	4
57	Synthesizing pseudo-T2w images to recapture missing data in neonatal neuroimaging with applications in rs-fMRI. NeuroImage, 2022, 253, 119091.	4.2	4
58	A Prospective Evaluation of Infant Cerebellar-Cerebral Functional Connectivity in Relation to Behavioral Development in Autism Spectrum Disorder. Biological Psychiatry Global Open Science, 2023, 3, 149-161.	2.2	3
59	Examining the factor structure and discriminative utility of the Infant Behavior Questionnaire–Revised in infant siblings of autistic children. Child Development, 2022, 93, 1398-1413.	3.0	3
60	Comparison of U.S. and Tajik infants' time in containment devices. Infant and Child Development, 2022, 31, .	1.5	3
61	Birthweight moderates the association between chronological age and infants' abilities to respond to cues for joint attention. Developmental Psychobiology, 2022, 64, e22239.	1.6	1