
Cuong Vuong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/538506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk factors for hospital readmission following complicated urinary tract infection. Scientific Reports, 2021, 11, 6926.	3.3	3
2	Risk factors for enterococcal urinary tract infections: a multinational, retrospective cohort study. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 2005-2010.	2.9	3
3	Discovery of Pyrrolidine-2,3-diones as Novel Inhibitors of P. aeruginosa PBP3. Antibiotics, 2021, 10, 529.	3.7	11
4	Interaction Mode of the Novel Monobactam AIC499 Targeting Penicillin Binding Protein 3 of Gram-Negative Bacteria. Biomolecules, 2021, 11, 1057.	4.0	10
5	Mandatory surveillance and outbreaks reporting of the WHO priority pathogens for research & discovery of new antibiotics in European countries. Clinical Microbiology and Infection, 2020, 26, 943.e1-943.e6.	6.0	30
6	Linking antimicrobial resistance surveillance to antibiotic policy in healthcare settings: the COMBACTE-Magnet EPI-Net COACH project. Journal of Antimicrobial Chemotherapy, 2020, 75, ii2-ii19.	3.0	9
7	Clinical outcomes of hospitalised patients with catheter-associated urinary tract infection in countries with a high rate of multidrug-resistance: the COMBACTE-MAGNET RESCUING study. Antimicrobial Resistance and Infection Control, 2019, 8, 198.	4.1	32
8	Surveillance for control of antimicrobial resistance. Lancet Infectious Diseases, The, 2018, 18, e99-e106.	9.1	235
9	Risk factors and prognosis of complicated urinary tract infections caused by Pseudomonas aeruginosa in hospitalized patients: a retrospective multicenter cohort study. Infection and Drug Resistance, 2018, Volume 11, 2571-2581.	2.7	27
10	Predictive factors for multidrug-resistant gram-negative bacteria among hospitalised patients with complicated urinary tract infections. Antimicrobial Resistance and Infection Control, 2018, 7, 111.	4.1	34
11	Risk Factors for Treatment Failure and Mortality among Hospitalised Patients with Complicated Urinary Tract Infection: A Multicentre Retrospective Cohort Study, RESCUING Study Group. Clinical Infectious Diseases, 2018, 68, 29-36.	5.8	40
12	Cost of hospitalised patients due to complicated urinary tract infections: a retrospective observational study in countries with high prevalence of multidrug-resistant Gram-negative bacteria: the COMBACTE-MAGNET, RESCUING study. BMJ Open, 2018, 8, e020251.	1.9	34
13	Towards Profiles of Resistance Development and Toxicity for the Small Cationic Hexapeptide RWRWRW-NH2. Frontiers in Cell and Developmental Biology, 2016, 4, 86.	3.7	15
14	Investigational drugs to treat methicillin-resistant <i>Staphylococcus aureus</i> . Expert Opinion on Investigational Drugs, 2016, 25, 73-93.	4.1	62
15	The Innovative Medicines Initiative's New Drugs for Bad Bugs programme: European public–private partnerships for the development of new strategies to tackle antibiotic resistance. Journal of Antimicrobial Chemotherapy, 2016, 71, 290-295.	3.0	101
16	Mode of action of closthioamide: the first member of the polythioamide class of bacterial DNA gyrase inhibitors. Journal of Antimicrobial Chemotherapy, 2015, 70, 2576-2588.	3.0	42
17	Analysis of the Mechanism of Action of Potent Antibacterial Hetero-tri-organometallic Compounds: A Structurally New Class of Antibiotics. ACS Chemical Biology, 2013, 8, 1442-1450.	3.4	119
18	SaeR Binds a Consensus Sequence within Virulence Gene Promoters to Advance USA300 Pathogenesis. Journal of Infectious Diseases, 2010, 201, 241-254.	4.0	141

CUONG VUONG

#	Article	IF	CITATIONS
19	The SaeR/S Gene Regulatory System Is Essential for Innate Immune Evasion by <i>Staphylococcus aureus</i> . Journal of Infectious Diseases, 2009, 199, 1698-1706.	4.0	176
20	The Biofilm Exopolysaccharide Polysaccharide Intercellular Adhesin—A Molecular and Biochemical Approach. , 2008, 431, 97-105.		7
21	Development of Realâ€Time In Vivo Imaging of Deviceâ€Related <i>Staphylococcus epidermidis</i> Infection in Mice and Influence of Animal Immune Status on Susceptibility to Infection. Journal of Infectious Diseases, 2008, 198, 258-261.	4.0	43
22	SarZ Is a Key Regulator of Biofilm Formation and Virulence inStaphylococcus epidermidis. Journal of Infectious Diseases, 2008, 197, 1254-1262.	4.0	46
23	Role of the luxS Quorum-Sensing System in Biofilm Formation and Virulence of Staphylococcus epidermidis. Infection and Immunity, 2006, 74, 488-496.	2.2	221
24	Staphylococcus quorum sensing in biofilm formation and infection. International Journal of Medical Microbiology, 2006, 296, 133-139.	3.6	317
25	Characterization of theStaphylococcus epidermidisAccessoryâ€Gene Regulator Response: Quorumâ€Sensing Regulation of Resistance to Human Innate Host Defense. Journal of Infectious Diseases, 2006, 193, 841-848.	4.0	72
26	Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Production Significantly Increases during Tricarboxylic Acid Cycle Stress. Journal of Bacteriology, 2005, 187, 2967-2973.	2.2	102
27	Conversion of Staphylococcus epidermidis Strains from Commensal to Invasive by Expression of the ica Locus Encoding Production of Biofilm Exopolysaccharide. Infection and Immunity, 2005, 73, 3188-3191.	2.2	83
28	Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. Journal of Hospital Infection, 2005, 61, 342-348.	2.9	89
29	Key role of poly-γ-dl-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. Journal of Clinical Investigation, 2005, 115, 688-694.	8.2	179
30	Key role of poly-Î ³ -dl-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. Journal of Clinical Investigation, 2005, 115, 688-694.	8.2	96
31	Increased Colonization of Indwelling Medical Devices by Quorumâ€6ensing Mutants ofStaphylococcus epidermidisIn Vivo. Journal of Infectious Diseases, 2004, 190, 1498-1505.	4.0	201
32	Engagement of the Pathogen Survival Response Used by Group A <i>Streptococcus</i> to Avert Destruction by Innate Host Defense. Journal of Immunology, 2004, 173, 1194-1201.	0.8	77
33	Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cellular Microbiology, 2004, 6, 753-759.	2.1	136
34	Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cellular Microbiology, 2004, 6, 269-275.	2.1	556
35	A Crucial Role for Exopolysaccharide Modification in Bacterial Biofilm Formation, Immune Evasion, and Virulence. Journal of Biological Chemistry, 2004, 279, 54881-54886.	3.4	480
36	Control of antimicrobial peptide synthesis by the agr quorum sensing system in Staphylococcus epidermidis: activity of the lantibiotic epidermin is regulated at the level of precursor peptide processing. Peptides, 2003, 24, 329-338.	2.4	32

CUONG VUONG

#	Article	IF	CITATIONS
37	Quorumâ€Sensing Control of Biofilm Factors in <i>Staphylococcus epidermidis</i> . Journal of Infectious Diseases, 2003, 188, 706-718.	4.0	296
38	Staphylococcus epidermidis infections. Microbes and Infection, 2002, 4, 481-489.	1.9	546
39	Identification of the sigB Operon in Staphylococcus epidermidis : Construction and Characterization of a sigB Deletion Mutant. Infection and Immunity, 2001, 69, 7933-7936.	2.2	34
40	Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone. Archives of Microbiology, 2000, 174, 452-455.	2.2	62
41	Construction and Characterization of an <i>agr</i> Deletion Mutant of <i>Staphylococcus epidermidis</i> . Infection and Immunity, 2000, 68, 1048-1053.	2.2	119
42	The d -Alanine Residues of Staphylococcus aureus Teichoic Acids Alter the Susceptibility to Vancomycin and the Activity of Autolytic Enzymes. Antimicrobial Agents and Chemotherapy, 2000, 44, 2845-2847.	3.2	240
43	Impact of the <i>agr</i> Quorum‣ensing System on Adherence to Polystyrene in <i>Staphylococcus aureus</i> . Journal of Infectious Diseases, 2000, 182, 1688-1693.	4.0	425
44	Inhibition of virulence factor expression inStaphylococcus aureusby theStaphylococcus epidermidisagr pheromone and derivatives. FEBS Letters, 1999, 450, 257-262.	2.8	155