Nissim Hay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5384721/publications.pdf

Version: 2024-02-01

172207 301761 12,862 42 29 39 citations h-index g-index papers 45 45 45 20541 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Upstream and downstream of mTOR. Genes and Development, 2004, 18, 1926-1945.	2.7	3,638
2	The pentose phosphate pathway and cancer. Trends in Biochemical Sciences, 2014, 39, 347-354.	3.7	1,018
3	AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature, 2012, 485, 661-665.	13.7	934
4	Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes and Development, 2001, 15, 1406-1418.	2.7	828
5	Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?. Nature Reviews Cancer, 2016, 16, 635-649.	12.8	775
6	Hexokinase 2 Is Required for Tumor Initiation and Maintenance and Its Systemic Deletion Is Therapeutic in Mouse Models of Cancer. Cancer Cell, 2013, 24, 213-228.	7.7	678
7	Akt Determines Replicative Senescence and Oxidative or Oncogenic Premature Senescence and Sensitizes Cells to Oxidative Apoptosis. Cancer Cell, 2008, 14, 458-470.	7.7	676
8	Akt/Protein Kinase B Inhibits Cell Death by Preventing the Release of Cytochrome <i>c</i> from Mitochondria. Molecular and Cellular Biology, 1999, 19, 5800-5810.	1,1	613
9	Hexokinase-Mitochondria Interaction Mediated by Akt Is Required to Inhibit Apoptosis in the Presence or Absence of Bax and Bak. Molecular Cell, 2004, 16, 819-830.	4.5	592
10	Is Akt the "Warburg kinase�—Akt-energy metabolism interactions and oncogenesis. Seminars in Cancer Biology, 2009, 19, 25-31.	4.3	497
11	Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nature Communications, 2018, 9, 446.	5.8	311
12	FoxOs Inhibit mTORC1 and Activate Akt by Inducing the Expression of Sestrin3 and Rictor. Developmental Cell, 2010, 18, 592-604.	3.1	304
13	Akt Inhibits Apoptosis Downstream of BID Cleavage via a Glucose-Dependent Mechanism Involving Mitochondrial Hexokinases. Molecular and Cellular Biology, 2004, 24, 730-740.	1.1	269
14	Interplay between FOXO, TOR, and Akt. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1965-1970.	1.9	256
15	FGF-dependent metabolic control of vascular development. Nature, 2017, 545, 224-228.	13.7	256
16	Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell, 2006, 10, 269-280.	7.7	207
17	Akt as a target for cancer therapy: more is not always better (lessons from studies in mice). British Journal of Cancer, 2017, 117, 159-163.	2.9	101
18	Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms. Cancer Cell, 2016, 29, 523-535.	7.7	89

#	Article	IF	CITATIONS
19	Quantitative Lipid Imaging Reveals a New Signaling Function of Phosphatidylinositol-3,4-Bisphophate: Isoform- and Site-Specific Activation of Akt. Molecular Cell, 2018, 71, 1092-1104.e5.	4.5	89
20	Aerobic Glycolysis Is Essential for Normal Rod Function and Controls Secondary Cone Death in Retinitis Pigmentosa. Cell Reports, 2018, 23, 2629-2642.	2.9	88
21	Identifying strategies to target the metabolic flexibility of tumours. Nature Metabolism, 2020, 2, 335-350.	5.1	86
22	Akt isoforms and glucose homeostasis – the leptin connection. Trends in Endocrinology and Metabolism, 2011, 22, 66-73.	3.1	80
23	A transcriptional activation function of p53 is dispensable for and inhibitory of its apoptotic function. Oncogene, 2001, 20, 659-668.	2.6	73
24	p53 Strikes mTORC1 by Employing Sestrins. Cell Metabolism, 2008, 8, 184-185.	7.2	50
25	mTORC1 Hyperactivity Inhibits Serum Deprivation-Induced Apoptosis via Increased Hexokinase II and GLUT1 Expression, Sustained Mcl-1 Expression, and Glycogen Synthase Kinase $3\hat{l}^2$ Inhibition. Molecular and Cellular Biology, 2009, 29, 5136-5147.	1.1	45
26	Hepatic HKDC1 Expression Contributes to Liver Metabolism. Endocrinology, 2019, 160, 313-330.	1.4	40
27	Hexokinase 2 as oncotarget. Oncotarget, 2013, 4, 1862-1863.	0.8	37
28	Akt1 promotes stimuli-induced endothelial-barrier protection through FoxO-mediated tight-junction protein turnover. Cellular and Molecular Life Sciences, 2016, 73, 3917-3933.	2.4	35
29	Hexokinase 2 is dispensable for T cell-dependent immunity. Cancer & Metabolism, 2018, 6, 10.	2.4	33
30	Selective eradication of cancer displaying hyperactive Akt by exploiting the metabolic consequences of Akt activation. ELife, $2018, 7, .$	2.8	32
31	Cell-Autonomous versus Systemic Akt Isoform Deletions Uncovered New Roles for Akt1 and Akt2 in Breast Cancer. Molecular Cell, 2020, 80, 87-101.e5.	4. 5	32
32	A non-catalytic scaffolding activity of hexokinase 2 contributes to EMT and metastasis. Nature Communications, 2022, 13, 899.	5.8	29
33	Systemic Akt1 Deletion after Tumor Onset in p53â^'/â^' Mice Increases Lifespan and Regresses Thymic Lymphoma Emulating p53 Restoration. Cell Reports, 2015, 12, 610-621.	2.9	11
34	Fuelling cancer cells. Nature Reviews Endocrinology, 2019, 15, 71-72.	4.3	10
35	Expanding the concepts of cancer metabolism. Experimental and Molecular Medicine, 2018, 50, 1-3.	3.2	9
36	Hexokinase II may be dispensable for CD4 T cell responses against a virus infection. PLoS ONE, 2018, 13, e0191533.	1.1	9

#	Article	IF	Citations
37	Amalgam regulates the receptor tyrosine kinase pathway through Sprouty in glial cell development. Journal of Cell Science, 2020, 133, .	1.2	6
38	The calcium-binding protein S100B reduces IL6 production in malignant melanoma via inhibition of RSK cellular signaling. PLoS ONE, 2021, 16, e0256238.	1.1	1
39	The Roles of Akt1 and Akt2 in GPIb-IX-Mediated Platelet Activation Signaling Blood, 2007, 110, 3635-3635.	0.6	O
40	The Role of Akt3 in Platelet Activation. Blood, 2008, 112, 2853-2853.	0.6	0
41	The Role of Akt3 in Mediating Outside-in Signaling of the Platelet Integrin αIlbβ3. Blood, 2011, 118, 1134-1134.	0.6	O
42	How to inhibit breast cancer and breast cancer metastasis with Akt inhibitors: Lessons learned from studies in mice , 2021, 1, 30-33.		0