
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5383815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Members of the ribosomal protein S6 (RPS6) family act as proâ€viral factor for tomato spotted wilt orthotospovirus infectivity in <i>Nicotiana benthamiana</i> . Molecular Plant Pathology, 2022, 23, 431-446.	4.2	6
2	Diversity and distribution of pathotypes of the soybean rust fungus Phakopsora pachyrhizi in East Africa. Plant Pathology, 2021, 70, 655-666.	2.4	4
3	Red light imaging for programmed cell death visualization and quantification in plant–pathogen interactions. Molecular Plant Pathology, 2021, 22, 361-372.	4.2	21
4	Evaluation of soybean genotypes for resistance against the rust ausing fungus <i>Phakopsora pachyrhizi</i> in East Africa. Plant Pathology, 2021, 70, 841-852.	2.4	2
5	Potato StMPK7 is a downstream component of StMKK1 and promotes resistance to the oomycete pathogen <i>Phytophthora infestans</i> . Molecular Plant Pathology, 2021, 22, 644-657.	4.2	15
6	The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature, 2021, 598, 495-499.	27.8	223
7	Knocking out <i>SOBIR1</i> in <i>Nicotiana benthamiana</i> abolishes functionality of transgenic receptor-like protein Cf-4. Plant Physiology, 2021, 185, 290-294.	4.8	12
8	An Isoform of the Eukaryotic Translation Elongation Factor 1A (eEF1a) Acts as a Pro-Viral Factor Required for Tomato Spotted Wilt Virus Disease in Nicotiana benthamiana. Viruses, 2021, 13, 2190.	3.3	3
9	Population studies of the wild tomato species Solanum chilense reveal geographically structured major gene-mediated pathogen resistance. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202723.	2.6	13
10	Plant Immunity: Thinking Outside and Inside the Box. Trends in Plant Science, 2019, 24, 587-601.	8.8	111
11	An EFRâ€Cfâ€9 chimera confers enhanced resistance to bacterial pathogens by SOBIR1―and BAK1â€dependent recognition of elf18. Molecular Plant Pathology, 2019, 20, 751-764.	4.2	19
12	Kinase activity of SOBIR1 and BAK1 is required for immune signalling. Molecular Plant Pathology, 2019, 20, 410-422.	4.2	71
13	The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against <i>Phytophthora infestans</i> . Molecular Plant-Microbe Interactions, 2018, 31, 795-802.	2.6	46
14	The Bacterial Effector AvrPto Targets the Regulatory Coreceptor SOBIR1 and Suppresses Defense Signaling Mediated by the Receptor-Like Protein Cf-4. Molecular Plant-Microbe Interactions, 2018, 31, 75-85.	2.6	13
15	Distinct Roles of Non-Overlapping Surface Regions of the Coiled-Coil Domain in the Potato Immune Receptor Rx1. Plant Physiology, 2018, 178, 1310-1331.	4.8	18
16	Plant phosphatidylinositolâ€specific phospholipase C at the center of plant innate immunity. Journal of Integrative Plant Biology, 2017, 59, 164-179.	8.5	30
17	Silencing of the tomato phosphatidylinositolâ€phospholipase C2 (SIPLC2) reduces plant susceptibility to <i>Botrytis cinerea</i> . Molecular Plant Pathology, 2016, 17, 1354-1363.	4.2	22
18	Avr4 promotes Cfâ€4 receptorâ€like protein association with the BAK1/SERK3 receptorâ€like kinase to initiate receptor endocytosis and plant immunity. New Phytologist, 2016, 210, 627-642.	7.3	146

#	Article	IF	CITATIONS
19	Knocking down expression of the auxin-amidohydrolase IAR3 alters defense responses in Solanaceae family plants. Plant Science, 2016, 253, 31-39.	3.6	7
20	Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 3339-3351.	4.8	22
21	Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1365-1378.	2.4	30
22	SOBIR1 requires the GxxxG dimerization motif in its transmembrane domain to form constitutive complexes with receptorâ€like proteins. Molecular Plant Pathology, 2016, 17, 96-107.	4.2	43
23	Random mutagenesis of the nucleotidea€binding domain of <scp>NRC</scp> 1 (<scp>NB</scp> â€ <scp>LRR</scp> Required for Hypersensitive Responseâ€Associated Cell Deathâ€1), a downstream signalling nucleotideâ€binding, leucineâ€rich repeat (<scp>NB</scp> â€ <scp>LRR</scp>) protein, identifies gainâ€ofâ€function mutations in the nucleotideâ€binding pocket. New Phytologist, 2015, 208,	7.3	37
24	Spatially Resolved Plant Metabolomics: Some Potentials and Limitations of Laser-Ablation Electrospray Ionization Mass Spectrometry Metabolite Imaging Â. Plant Physiology, 2015, 169, 1424-1435.	4.8	50
25	Functional Divergence of Two Secreted Immune Proteases of Tomato. Current Biology, 2015, 25, 2300-2306.	3.9	72
26	Functional Analysis of the Tomato Immune Receptor Ve1 through Domain Swaps with Its Non-Functional Homolog Ve2. PLoS ONE, 2014, 9, e88208.	2.5	46
27	<i>Arabidopsis thaliana</i> receptor-like protein <i>At</i> RLP23 associates with the receptor-like kinase <i>At</i> SOBIR1. Plant Signaling and Behavior, 2014, 9, e27937.	2.4	35
28	The tomato phosphatidylinositol-phospholipase C2 (SIPLC2) is required for defense gene induction by the fungal elicitor xylanase. Journal of Plant Physiology, 2014, 171, 959-965.	3.5	26
29	Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends in Plant Science, 2014, 19, 123-132.	8.8	263
30	Chaperones of the endoplasmic reticulum are required for Ve1 â€nediated resistance to V erticillium. Molecular Plant Pathology, 2014, 15, 109-117.	4.2	33
31	Transcriptome Sequencing Uncovers the <i>Avr5</i> Avirulence Gene of the Tomato Leaf Mold Pathogen <i>Cladosporium fulvum</i> . Molecular Plant-Microbe Interactions, 2014, 27, 846-857.	2.6	59
32	Dynamic hydrolase activities precede hypersensitive tissue collapse in tomato seedlings. New Phytologist, 2014, 203, 913-925.	7.3	26
33	Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10010-10015.	7.1	272
34	System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato Â. Plant Physiology, 2013, 162, 1599-1617.	4.8	41
35	Detoxification of αâ€ŧomatine by <i><scp>C</scp>ladosporium fulvum</i> is required for full virulence on tomato. New Phytologist, 2013, 198, 1203-1214.	7.3	99
36	Defense activation triggers differential expression of <i>phospholipase-C</i> (<i>PLC</i>) genes and elevated temperature induces phosphatidic acid (PA) accumulation in tomato. Plant Signaling and Behavior, 2012, 7, 1073-1078.	2.4	14

MATTHIEU H A J JOOSTEN

#	Article	IF	CITATIONS
37	Endoplasmic Reticulum-Quality Control Chaperones Facilitate the Biogenesis of Cf Receptor-Like Proteins Involved in Pathogen Resistance of Tomato Â. Plant Physiology, 2012, 159, 1819-1833.	4.8	63
38	Isolation of Apoplastic Fluid from Leaf Tissue by the Vacuum Infiltration-Centrifugation Technique. Methods in Molecular Biology, 2012, 835, 603-610.	0.9	37
39	Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. Plant Cell, 2011, 23, 4-15.	6.6	896
40	Affinity of Avr2 for tomato cysteine protease Rcr3 correlates with the Avr2â€ŧriggered Cfâ€2â€mediated hypersensitive response. Molecular Plant Pathology, 2011, 12, 21-30.	4.2	23
41	Nucleocytoplasmic Distribution Is Required for Activation of Resistance by the Potato NB-LRR Receptor Rx1 and Is Balanced by Its Functional Domains. Plant Cell, 2011, 22, 4195-4215.	6.6	140
42	Interfamily Transfer of Tomato <i>Ve1</i> Mediates <i>Verticillium</i> Resistance in Arabidopsis Â. Plant Physiology, 2011, 156, 2255-2265.	4.8	250
43	RanGAP2 Mediates Nucleocytoplasmic Partitioning of the NB-LRR Immune Receptor Rx in the Solanaceae, Thereby Dictating Rx Function Â. Plant Cell, 2011, 22, 4176-4194.	6.6	133
44	Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant Journal, 2010, 62, 224-239.	5.7	127
45	Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants. Science, 2010, 329, 953-955.	12.6	696
46	An Outlook on the Localisation and Structure-Function Relationships of R Proteins in Solanum. Potato Research, 2009, 52, 229-235.	2.7	3
47	Separable roles of the <i>Pseudomonas syringae</i> pv. <i>phaseolicola</i> accessory protein HrpZ1 in ionâ€conducting pore formation and activation of plant immunity. Plant Journal, 2009, 57, 706-717.	5.7	52
48	Quantitative Phosphoproteomics of Tomato Mounting a Hypersensitive Response Reveals a Swift Suppression of Photosynthetic Activity and a Differential Role for Hsp90 Isoforms. Journal of Proteome Research, 2009, 8, 1168-1182.	3.7	43
49	Gene for Gene Models and Beyond: the Cladosporium fulvumTomato Pathosystem. , 2009, , 135-156.		15
50	Postâ€ŧranslational modification of host proteins in pathogenâ€ŧriggered defence signalling in plants. Molecular Plant Pathology, 2008, 9, 545-560.	4.2	70
51	The novel <i>Cladosporium fulvum</i> lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Molecular Microbiology, 2008, 69, 119-136.	2.5	275
52	Tomato Mitogen-Activated Protein Kinases LeMPK1, LeMPK2, and LeMPK3 Are Activated during the Cf-4/Avr4-Induced Hypersensitive Response and Have Distinct Phosphorylation Specificities. Plant Physiology, 2007, 144, 1481-1494.	4.8	106
53	The diverse roles of NB-LRR proteins in plants. Physiological and Molecular Plant Pathology, 2007, 71, 126-134.	2.5	26
54	An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant Journal, 2007, 50, 14-28.	5.7	175

#	Article	IF	CITATIONS
55	CladosporiumÂfulvumÂCfHNNI1 induces hypersensitive necrosis, defence gene expression and disease resistance in both host and nonhost plants. Plant Molecular Biology, 2007, 64, 89-101.	3.9	20
56	Cladosporium fulvum Avr4 Protects Fungal Cell Walls Against Hydrolysis by Plant Chitinases Accumulating During Infection. Molecular Plant-Microbe Interactions, 2006, 19, 1420-1430.	2.6	363
57	cDNA-AFLP Combined with Functional Analysis Reveals Novel Genes Involved in the Hypersensitive Response. Molecular Plant-Microbe Interactions, 2006, 19, 567-576.	2.6	107
58	Cladosporium Avr2 Inhibits Tomato Rcr3 Protease Required for Cf-2-Dependent Disease Resistance. Science, 2005, 308, 1783-1786.	12.6	415
59	The Cf-4 and Cf-9 Resistance Genes Against Cladosporium fulvum are Conserved in Wild Tomato Species. Molecular Plant-Microbe Interactions, 2005, 18, 1011-1021.	2.6	46
60	Phosphatidic acid accumulation is an early response in theCf-4/Avr4interaction. Plant Journal, 2004, 39, 1-12.	5.7	199
61	Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9-4E) by secretion of a stable avr4E isoform. Molecular Microbiology, 2004, 54, 533-545.	2.5	98
62	Activity Profiling of Papain-Like Cysteine Proteases in Plants. Plant Physiology, 2004, 135, 1170-1178.	4.8	135
63	Rapid migration in gel filtration of the Cf-4 and Cf-9 resistance proteins is an intrinsic property of Cf proteins and not because of their association with high-molecular-weight proteins. Plant Journal, 2003, 35, 305-315.	5.7	33
64	Natural Disulfide Bond-disrupted Mutants of AVR4 of the Tomato Pathogen Cladosporium fulvum Are Sensitive to Proteolysis, Circumvent Cf-4-mediated Resistance, but Retain Their Chitin Binding Ability. Journal of Biological Chemistry, 2003, 278, 27340-27346.	3.4	102
65	Attenuation of Cf-Mediated Defense Responses at Elevated Temperatures Correlates With a Decrease in Elicitor-Binding Sites. Molecular Plant-Microbe Interactions, 2002, 15, 1040-1049.	2.6	75
66	The AVR4 Elicitor Protein of Cladosporium fulvum Binds to Fungal Components with High Affinity. Molecular Plant-Microbe Interactions, 2002, 15, 1219-1227.	2.6	21
67	Balancing selection favors guarding resistance proteins. Trends in Plant Science, 2002, 7, 67-71.	8.8	154
68	Cladosporium fulvum overcomes Cf-2-mediated resistance by producing truncated AVR2 elicitor proteins. Molecular Microbiology, 2002, 45, 875-884.	2.5	153
69	Functional analysis of cysteine residues of ECP elicitor proteins of the fungal tomato pathogen Cladosporium fulvum. Molecular Plant Pathology, 2002, 3, 91-95.	4.2	37
70	Expression of the Avirulence Gene Avr9 of the Fungal Tomato Pathogen Cladosporium fulvum Is Regulated by the Global Nitrogen Response Factor NRF1. Molecular Plant-Microbe Interactions, 2001, 14, 316-325.	2.6	71
71	The C-terminal Dilysine Motif for Targeting to the Endoplasmic Reticulum Is Not Required for Cf-9 Function. Molecular Plant-Microbe Interactions, 2001, 14, 412-415.	2.6	24
72	No Evidence for Binding Between Resistance Gene Product Cf-9 of Tomato and Avirulence Gene Product AVR9 of Cladosporium fulvum. Molecular Plant-Microbe Interactions, 2001, 14, 867-876.	2.6	78

#	Article	IF	CITATIONS
73	Specific recognition of AVR4 and AVR9 results in distinct patterns of hypersensitive cell death in tomato, but similar patterns of defence-related gene expression. Molecular Plant Pathology, 2001, 2, 77-86.	4.2	32
74	Avirulence proteins of plant pathogens: determinants of victory and defeat. Molecular Plant Pathology, 2001, 2, 355-364.	4.2	44
75	Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants. Plant Journal, 2000, 23, 735-745.	5.7	113
76	A functional cloning strategy, based on a binary PVX-expression vector, to isolate HR-inducing cDNAs of plant pathogens. Plant Journal, 2000, 24, 275-283.	5.7	130
77	Title is missing!. European Journal of Plant Pathology, 2000, 106, 493-506.	1.7	227
78	Plant Resistance Genes: Their Structure, Function and Evolution. European Journal of Plant Pathology, 2000, 106, 699-713.	1.7	102
79	Early defence responses induced by AVR9 and mutant analogues in tobacco cell suspensions expressing the Cf-9 resistance gene. Physiological and Molecular Plant Pathology, 2000, 56, 169-177.	2.5	25
80	Avirulence and resistance genes in the Cladosporium fulvum—tomato interaction. Current Opinion in Microbiology, 1999, 2, 368-373.	5.1	27
81	A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant Journal, 1999, 20, 279-288.	5.7	73
82	Additional Resistance Gene(s) Against Cladosporium fulvum Present on the Cf-9 Introgression Segment Are Associated with Strong PR Protein Accumulation. Molecular Plant-Microbe Interactions, 1998, 11, 301-308.	2.6	41
83	The Biotrophic Fungus Cladosporium fulvum Circumvents Cf-4-Mediated Resistance by Producing Unstable AVR4 Elicitors. Plant Cell, 1997, 9, 367.	6.6	2
84	The In Planta-Produced Extracellular Proteins ECP1 and ECP2 of Cladosporium fulvum Are Virulence Factors. Molecular Plant-Microbe Interactions, 1997, 10, 725-734.	2.6	112
85	The race-specific elicitor AVR9 of the tomato pathogen Cladosporium fulvum : a cystine knot protein. FEBS Letters, 1997, 404, 153-158.	2.8	73
86	Molecular and biochemical basis of the interaction between tomato and its fungal pathogen Cladosporium fulvum. Antonie Van Leeuwenhoek, 1997, 71, 137-141.	1.7	19
87	Molecular aspects of avirulence genes of the tomato pathogen Cladosporium fulvum. Canadian Journal of Botany, 1995, 73, 490-494.	1.1	4
88	Molecular characerization of the interaction between the fungal pathogen Cladosporium fulvum and tomato. Euphytica, 1994, 79, 219-225.	1.2	10
89	Molecular communication between host plant and the fungal tomato pathogenCladosporium fulvum. Antonie Van Leeuwenhoek, 1994, 65, 257-262.	1.7	10
90	Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature, 1994, 367, 384-386.	27.8	406

#	Article	IF	CITATIONS
91	Molecular Characterization of the Interaction Between the Fungal Pathogen Cladosporium Fulvum and Tomato. Current Plant Science and Biotechnology in Agriculture, 1994, , 199-206.	0.0	6
92	Avirulence Genes of the Tomato Pathogen Cladosporium Fulvum and their Exploitation in Molecular Breeding for Disease-Resistant Plants. Developments in Plant Pathology, 1993, , 24-32.	0.1	3
93	Molecular Cloning and Functions of Avirulence and Pathogenicity Genes of the Tomato Pathogen Cladosporium Fulvum. Current Plant Science and Biotechnology in Agriculture, 1993, , 289-298.	0.0	0
94	Subcellular localization of plant chitinases and 1,3-β-glucanases in Cladosporium fulvum (syn. Fulvia) Tj ETQq0 0	0 rgBT /O ^v 2:5	verlock 10 Tf
95	Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Molecular Biology, 1992, 20, 513-527.	3.9	211
96	Appearance of Pathogen-Related Proteins in Plant Hosts. , 1991, , 247-265.		4
97	Carbohydrate composition of apoplastic fluids isolated from tomato leaves inoculated with virulent or avirulent races of Cladosporium fulvum (syn. Fulvia fulva). European Journal of Plant Pathology, 1990, 96, 103-112.	0.5	64
98	Purification and Serological Characterization of Three Basic 15-Kilodalton Pathogenesis-Related Proteins from Tomato. Plant Physiology, 1990, 94, 585-591.	4.8	56
99	Subcellular Localization of Chitinase and of Its Potential Substrate in Tomato Root Tissues Infected by <i>Fusarium oxysporum</i> f. sp. <i>radicis-lycopersici</i> . Plant Physiology, 1990, 92, 1108-1120.	4.8	139
100	ldentification of Several Pathogenesis-Related Proteins in Tomato Leaves Inoculated with <i>Cladosporium fulvum</i> (syn. <i>Fulvia fulva</i>) as 1,3-β-Glucanases and Chitinases. Plant Physiology, 1989, 89, 945-951.	4.8	245
101	Apoplastic Proteins Involved in Communication Between Tomato and the Fungal Pathogen Cladosporium Fulvum. NATO ASI Series Series H, Cell Biology, 1989, , 273-280.	0.5	3
102	Isolation, purification and preliminary characterization of a protein specific for compatible Cladosporium fulvum (syn. Fulvia fulva)-tomato interactions. Physiological and Molecular Plant Pathology, 1988, 33, 241-253.	2.5	33