## Magdalena Bezanilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/538340/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | MOSSES AS MODEL SYSTEMS FOR THE STUDY OF METABOLISM AND DEVELOPMENT. Annual Review of Plant Biology, 2006, 57, 497-520.                                                                                   | 18.7 | 237       |
| 2  | Lifeact-mEGFP Reveals a Dynamic Apical F-Actin Network in Tip Growing Plant Cells. PLoS ONE, 2009, 4, e5744.                                                                                              | 2.5  | 196       |
| 3  | The Moss <i>Physcomitrium</i> ( <i>Physcomitrella</i> ) <i>patens</i> : A Model Organism for Non-Seed<br>Plants. Plant Cell, 2020, 32, 1361-1376.                                                         | 6.6  | 188       |
| 4  | Growth Mechanisms in Tip-Growing Plant Cells. Annual Review of Plant Biology, 2013, 64, 243-265.                                                                                                          | 18.7 | 180       |
| 5  | Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division. ELife, 2014, 3, .                                                                       | 6.0  | 175       |
| 6  | Non-model model organisms. BMC Biology, 2017, 15, 55.                                                                                                                                                     | 3.8  | 164       |
| 7  | Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13341-13346. | 7.1  | 158       |
| 8  | Plant Cytokinesis: Terminology for Structures and Processes. Trends in Cell Biology, 2017, 27, 885-894.                                                                                                   | 7.9  | 155       |
| 9  | Cytoskeletal dynamics: A view from the membrane. Journal of Cell Biology, 2015, 209, 329-337.                                                                                                             | 5.2  | 147       |
| 10 | Myosin XI Is Essential for Tip Growth in <i>Physcomitrella patens</i> Â. Plant Cell, 2010, 22, 1868-1882.                                                                                                 | 6.6  | 142       |
| 11 | Profilin Is Essential for Tip Growth in the Moss <i>Physcomitrella patens</i> . Plant Cell, 2007, 19, 3705-3722.                                                                                          | 6.6  | 131       |
| 12 | Evolutionary crossroads in developmental biology: <i>Physcomitrella patens</i> . Development<br>(Cambridge), 2010, 137, 3535-3543.                                                                        | 2.5  | 120       |
| 13 | RNA Interference in the Moss Physcomitrella patens Â. Plant Physiology, 2003, 133, 470-474.                                                                                                               | 4.8  | 113       |
| 14 | Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important<br>for tip growth. Plant Journal, 2008, 54, 863-875.                                             | 5.7  | 107       |
| 15 | Class II formin targeting to the cell cortex by binding PI(3,5)P2 is essential for polarized growth.<br>Journal of Cell Biology, 2012, 198, 235-250.                                                      | 5.2  | 94        |
| 16 | Physcomitrella patens: a model for tip cell growth and differentiation. Current Opinion in Plant<br>Biology, 2012, 15, 625-631.                                                                           | 7.1  | 74        |
| 17 | Actin Interacting Protein1 and Actin Depolymerizing Factor Drive Rapid Actin Dynamics<br>in <i>Physcomitrella patens</i> Â. Plant Cell, 2011, 23, 3696-3710.                                              | 6.6  | 70        |
| 18 | Actin and microtubule cross talk mediates persistent polarized growth. Journal of Cell Biology, 2018, 217, 3531-3544.                                                                                     | 5.2  | 70        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Interplay between Ions, the Cytoskeleton, and Cell Wall Properties during Tip Growth. Plant<br>Physiology, 2018, 176, 28-40.                                                                                                                              | 4.8  | 65        |
| 20 | Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton ( <i>Gossypium</i> ). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21152-21157. | 7.1  | 61        |
| 21 | Plant PIEZO homologs modulate vacuole morphology during tip growth. Science, 2021, 373, 586-590.                                                                                                                                                          | 12.6 | 58        |
| 22 | Plant formins: membrane anchors for actin polymerization. Trends in Cell Biology, 2013, 23, 227-233.                                                                                                                                                      | 7.9  | 56        |
| 23 | Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development. Plant<br>Physiology, 2016, 172, 28-37.                                                                                                                       | 4.8  | 52        |
| 24 | Myosin VIII Regulates Protonemal Patterning and Developmental Timing in the Moss Physcomitrella patens. Molecular Plant, 2011, 4, 909-921.                                                                                                                | 8.3  | 51        |
| 25 | A family of ROP proteins that suppress actin dynamics and are essential for polarized growth and cell adhesion. Journal of Cell Science, 2015, 128, 2553-64.                                                                                              | 2.0  | 43        |
| 26 | Efficient and modular CRISPR as9 vector system for <i>Physcomitrella patens</i> . Plant Direct, 2019, 3, e00168.                                                                                                                                          | 1.9  | 39        |
| 27 | Orchestrating cell morphology from the inside out – using polarized cell expansion in plants as a<br>model. Current Opinion in Cell Biology, 2020, 62, 46-53.                                                                                             | 5.4  | 32        |
| 28 | A Fully Functional ROP Fluorescent Fusion Protein Reveals Roles for This GTPase in Subcellular and<br>Tissue-Level Patterning. Plant Cell, 2020, 32, 3436-3451.                                                                                           | 6.6  | 29        |
| 29 | Phylogenetic Analysis of New Plant Myosin Sequences. Journal of Molecular Evolution, 2003, 57, 229-239.                                                                                                                                                   | 1.8  | 27        |
| 30 | A glossary of plant cell structures: Current insights and future questions. Plant Cell, 2022, 34, 10-52.                                                                                                                                                  | 6.6  | 27        |
| 31 | Spindle Positioning: Actin Mediates Pushing and Pulling. Current Biology, 2009, 19, R168-R169.                                                                                                                                                            | 3.9  | 24        |
| 32 | Rapid Screening for Temperature-Sensitive Alleles in Plants. Plant Physiology, 2009, 151, 506-514.                                                                                                                                                        | 4.8  | 23        |
| 33 | Simultaneous imaging and functional studies reveal a tight correlation between calcium and actin<br>networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>E2869-E2878.                                 | 7.1  | 23        |
| 34 | An ancient Sec10–formin fusion provides insights into actin-mediated regulation of exocytosis.<br>Journal of Cell Biology, 2018, 217, 945-957.                                                                                                            | 5.2  | 23        |
| 35 | Systematic survey of the function of ROP regulators and effectors during tip growth in the moss <i>Physcomitrella patens</i> . Journal of Experimental Botany, 2019, 70, 447-457.                                                                         | 4.8  | 22        |
| 36 | Direct observation of the effects of cellulose synthesis inhibitors using live cell imaging of Cellulose Synthase (CESA) in Physcomitrella patens. Scientific Reports, 2018, 8, 735.                                                                      | 3.3  | 21        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | <i><scp>SECONDARY WALL ASSOCIATED MYB</scp>1</i> is a positive regulator of secondary cell wall thickening in <i>Brachypodium distachyon</i> and is not found in the Brassicaceae. Plant Journal, 2018, 96, 532-545. | 5.7 | 20        |
| 38 | Phosphatase and tensin homolog (PTEN) is a growth repressor of both rhizoid and gametophore development in the moss Physcomitrella patens Plant Physiology, 2015, 169, pp.01197.2015.                                | 4.8 | 17        |
| 39 | Conditional genetic screen in Physcomitrella patens reveals a novel microtubule<br>depolymerizing-end-tracking protein. PLoS Genetics, 2018, 14, e1007221.                                                           | 3.5 | 17        |
| 40 | Cytoskeletal discoveries in the plant lineage using the moss Physcomitrella patens. Biophysical<br>Reviews, 2018, 10, 1683-1693.                                                                                     | 3.2 | 16        |
| 41 | Geometric cues forecast the switch from two―to threeâ€dimensional growth in Physcomitrella patens.<br>New Phytologist, 2020, 225, 1945-1955.                                                                         | 7.3 | 16        |
| 42 | A model suite of green algae within the Scenedesmaceae for investigating contrasting desiccation tolerance and morphology. Journal of Cell Science, 2018, 131, .                                                     | 2.0 | 15        |
| 43 | SABRE populates ER domains essential for cell plate maturation and cell expansion influencing cell and tissue patterning. ELife, 2021, 10, .                                                                         | 6.0 | 11        |
| 44 | In vivo analysis of formin dynamics reveals functional class diversification. Journal of Cell Science, 2020, 133, .                                                                                                  | 2.0 | 9         |
| 45 | COPII Sec23 proteins form isoform-specific endoplasmic reticulum exit sites with differential effects on polarized growth. Plant Cell, 2022, 34, 333-350.                                                            | 6.6 | 9         |
| 46 | Tip Growth in the MossPhyscomitrella patens. , 0, , 143-166.                                                                                                                                                         |     | 3         |
| 47 | Transient RNAi Assay in 96-Well Plate Format Facilitates High-Throughput Gene Function Studies in<br>Planta. Methods in Molecular Biology, 2012, 918, 327-340.                                                       | 0.9 | 2         |
| 48 | What can plants do for cell biology?. Molecular Biology of the Cell, 2013, 24, 2491-2493.                                                                                                                            | 2.1 | 2         |
| 49 | Patterning the cell: membrane–cytoskeleton crosstalk. Current Opinion in Plant Biology, 2013, 16,<br>675-677.                                                                                                        | 7.1 | 1         |
| 50 | Back to the roots: A focus on plant cell biology. Plant Cell, 2022, 34, 1-3.                                                                                                                                         | 6.6 | 1         |
| 51 | Finding a Niche. Molecular Biology of the Cell, 2010, 21, 3762-3763.                                                                                                                                                 | 2.1 | 0         |
| 52 | Slip slidin' away: Bristleâ€driven gliding by <i>Tetradesmus deserticola</i> (chlorophyta) in microfluidic chambers <sup>1</sup> . Journal of Phycology, 0, , .                                                      | 2.3 | 0         |