Riley Hanus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5383160/publications.pdf Version: 2024-02-01

DILEY HANLIS

#	Article	IF	CITATIONS
1	Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence. Advanced Materials, 2017, 29, 1606768.	21.0	365
2	Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nature Communications, 2017, 8, 13828.	12.8	360
3	Ultrahigh thermoelectric performance in Cu ₂ Se-based hybrid materials with highly dispersed molecular CNTs. Energy and Environmental Science, 2017, 10, 1928-1935.	30.8	298
4	Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy and Environmental Science, 2017, 10, 183-191.	30.8	252
5	Minimum thermal conductivity in the context of <i>diffuson</i> -mediated thermal transport. Energy and Environmental Science, 2018, 11, 609-616.	30.8	221
6	Enhanced Thermoelectric Performance through Tuning Bonding Energy in Cu ₂ Se _{1–<i>x</i>} S _{<i>x</i>} Liquid-like Materials. Chemistry of Materials, 2017, 29, 6367-6377.	6.7	179
7	Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency. Advanced Materials, 2019, 31, e1900108.	21.0	171
8	Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites. Nature Communications, 2015, 6, 7584.	12.8	142
9	Meltâ€Centrifuged (Bi,Sb) ₂ Te ₃ : Engineering Microstructure toward High Thermoelectric Efficiency. Advanced Materials, 2018, 30, e1802016.	21.0	133
10	Dislocation strain as the mechanism of phonon scattering at grain boundaries. Materials Horizons, 2016, 3, 234-240.	12.2	108
11	Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping. Materials Today Physics, 2017, 1, 7-13.	6.0	93
12	Quantifying charge carrier localization in chemically doped semiconducting polymers. Nature Materials, 2021, 20, 1414-1421.	27.5	61
13	Analytical Models of Phonon–Point-Defect Scattering. Physical Review Applied, 2020, 13, .	3.8	55
14	A Chemical Understanding of the Band Convergence in Thermoelectric CoSb ₃ Skutterudites: Influence of Electron Population, Local Thermal Expansion, and Bonding Interactions. Chemistry of Materials, 2017, 29, 1156-1164.	6.7	50
15	Thermal transport in defective and disordered materials. Applied Physics Reviews, 2021, 8, .	11.3	45
16	Uncovering design principles for amorphous-like heat conduction using two-channel lattice dynamics. Materials Today Physics, 2021, 18, 100344.	6.0	42
17	Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductivity of PbTe Thermoelectrics. Advanced Functional Materials, 2021, 31, 2101214.	14.9	41
18	Alloy scattering of phonons. Materials Horizons, 2020, 7, 1452-1456.	12.2	39

RILEY HANUS

#	Article	IF	CITATIONS
19	Atomistic explanation of brittle failure of thermoelectric skutterudite CoSb3. Acta Materialia, 2016, 103, 775-780.	7.9	28
20	Phonon diffraction and dimensionality crossover in phonon-interface scattering. Communications Physics, 2018, 1, .	5.3	28
21	Thermal boundary resistance correlated with strain energy in individual Si film-wafer twist boundaries. Materials Today Physics, 2018, 6, 53-59.	6.0	27
22	Considering the Role of Ion Transport in Diffusonâ€Đominated Thermal Conductivity. Advanced Energy Materials, 2022, 12, .	19.5	27
23	GaN thermal transport limited by the interplay of dislocations and size effects. Physical Review B, 2020, 102, .	3.2	26
24	Thermal Evolution of Internal Strain in Doped PbTe. Chemistry of Materials, 2021, 33, 4765-4772.	6.7	11
25	Thermoreflectance Imaging of (Ultra)wide Band-Gap Devices with MoS ₂ Enhancement Coatings. ACS Applied Materials & Interfaces, 2021, 13, 42195-42204.	8.0	7
26	Dislocation-Limited Thermal Conductivity in LiF: Revisiting Perturbative Models. Jom, 0, , 1.	1.9	1