
Irene Mittermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5382519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycosylation enhances allergenic activity of major bee venom allergen Api m 1 by adding IgE epitopes. Journal of Allergy and Clinical Immunology, 2021, 147, 1502-1504.e5.	2.9	9
2	Molecular IgE sensitization profiles of urban and rural children in South Africa. Pediatric Allergy and Immunology, 2021, 32, 234-241.	2.6	9
3	Microarray-Based Detection of Allergen-Reactive IgE in Patients with Mastocytosis. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2761-2768.e16.	3.8	8
4	Sensitization to grass pollen allergen molecules in a birth cohort—natural Phl p 4 as an early indicator of grass pollen allergy. Journal of Allergy and Clinical Immunology, 2020, 145, 1174-1181.e6.	2.9	30
5	Molecular characterization of a fungal cyclophilin allergen Rhi o 2 and elucidation of antigenic determinants responsible for IgE–cross-reactivity. Journal of Biological Chemistry, 2020, 295, 2736-2748.	3.4	10
6	Fluorescent labeling of major honeybee allergens Api m 1 and Api m 2 with quantum dots and the development of a multiplex basophil activation test. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1753-1756.	5.7	10
7	Prevention of allergy by virusâ€like nanoparticles (<scp>VNP</scp>) delivering shielded versions of major allergens in a humanized murine allergy model. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 246-260.	5.7	31
8	Recombinant glycoproteins resembling carbohydrate-specific IgE epitopes from plants, venoms and mites. EBioMedicine, 2019, 39, 33-43.	6.1	14
9	Molecular allergen profiling in horses by microarray reveals Fag e 2 from buckwheat as a frequent sensitizer. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1436-1446.	5.7	10
10	House dust mites as potential carriers for IgE sensitization to bacterial antigens. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 115-124.	5.7	48
11	Intranasal administration of allergen increases specific IgE whereas intranasal omalizumab does not increase serum IgE levels—A pilot study. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1003-1012.	5.7	19
12	The culprit insect but not severity of allergic reactions to bee and wasp venom can be determined by molecular diagnosis. PLoS ONE, 2018, 13, e0199250.	2.5	27
13	Molecular Aspects of Allergens and Allergy. Advances in Immunology, 2018, 138, 195-256.	2.2	81
14	Molecular aspects of allergens in atopic dermatitis. Current Opinion in Allergy and Clinical Immunology, 2017, 17, 269-277.	2.3	31
15	Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen. PLoS ONE, 2016, 11, e0160641.	2.5	30
16	The quest for autoreactive antibodies in nasal polyps. Journal of Allergy and Clinical Immunology, 2016, 138, 893-895.e5.	2.9	20
17	α-NAC–Specific Autoreactive CD8+ T Cells in Atopic Dermatitis Are of an Effector Memory Type and Secrete IL-4 and IFN-γ. Journal of Immunology, 2016, 196, 3245-3252.	0.8	42
18	IgE Sensitization Profiles Differ between Adult Patients with Severe and Moderate Atopic Dermatitis. PLoS ONE, 2016, 11, e0156077.	2.5	67

IRENE MITTERMANN

#	Article	IF	CITATIONS
19	Genetic Variants in CHIA and CHI3L1 Are Associated with the IgE Response to the Ascaris Resistance Marker ABA-1 and the Birch Pollen Allergen Bet v 1. PLoS ONE, 2016, 11, e0167453.	2.5	12
20	Cytokine Effects Induced by the Human Autoallergen α-NAC. Journal of Investigative Dermatology, 2014, 134, 1570-1578.	0.7	29
21	Advances in allergen-microarray technology for diagnosis and monitoring of allergy: The MeDALL allergen-chip. Methods, 2014, 66, 106-119.	3.8	210
22	A combined biochemical, biophysical and immunological approach towards the identification of celiac disease-specific wheat antigens. Amino Acids, 2013, 45, 889-900.	2.7	7
23	α-Purothionin, a new wheat allergen associated with severe allergy. Journal of Allergy and Clinical Immunology, 2013, 132, 1000-1003.e4.	2.9	34
24	The Human Skin–Associated Autoantigen α-NAC Activates Monocytes and Dendritic Cells via TLR-2 and Primes an IL-12-Dependent Th1 Response. Journal of Investigative Dermatology, 2013, 133, 2289-2292.	0.7	14
25	High sensitivity of CAP-FEIA rVes v 5 and rVes v 1 for diagnosis of Vespula venom allergy. Journal of Allergy and Clinical Immunology, 2012, 129, 1406-1408.	2.9	67
26	Molecular characterization of wheat allergens specifically recognized by patients suffering from wheatâ€induced respiratory allergy. Clinical and Experimental Allergy, 2012, 42, 597-609.	2.9	41
27	Low sensitivity of commercially available rApi m 1 for diagnosis of honeybee venom allergy. Journal of Allergy and Clinical Immunology, 2011, 128, 671-673.	2.9	74
28	The role of T-cell reactivity towards the autoantigen α-NAC in atopic dermatitis. British Journal of Dermatology, 2011, 164, 316-324.	1.5	43
29	Biophysical characterization of recombinant HIV-1 subtype C virus infectivity factor. Amino Acids, 2011, 40, 981-989.	2.7	11
30	Recombinant allergen-based IgE testing to distinguish bee and wasp allergy. Journal of Allergy and Clinical Immunology, 2010, 125, 1300-1307.e3.	2.9	112
31	Linking allergy to autoimmune disease. Trends in Immunology, 2009, 30, 109-116.	6.8	98
32	The IgE-Reactive Autoantigen Hom s 2 Induces Damage of Respiratory Epithelial Cells and Keratinocytes via Induction of IFN-γ. Journal of Investigative Dermatology, 2008, 128, 1451-1459.	0.7	48
33	Identification of a B-cell Epitope of Hyaluronidase, a Major Bee Venom Allergen, from its Crystal Structure in Complex with a Specific Fab. Journal of Molecular Biology, 2007, 368, 742-752.	4.2	75
34	Autosensitization as a Pathomechanism in Asthma. Annals of the New York Academy of Sciences, 2007, 1107, 417-425.	3.8	8
35	Hom s 4, an IgE-Reactive Autoantigen Belonging to a New Subfamily of Calcium-Binding Proteins, Can Induce Th Cell Type 1-Mediated Autoreactivity. Journal of Immunology, 2005, 175, 1286-1294.	0.8	73
36	Identification of a villin-related tobacco protein as a novel cross-reactive plant allergen. FEBS Letters, 2005, 579, 3807-3813.	2.8	5

IRENE MITTERMANN

#	Article	IF	CITATIONS
37	Induction of autoallergy with an environmental allergen mimicking a self protein in a murine model of experimental allergic asthma. Journal of Allergy and Clinical Immunology, 2004, 114, 422-428.	2.9	33
38	MAP kinase phosphorylation of plant profilin. Biochemical and Biophysical Research Communications, 2004, 324, 382-386.	2.1	29
39	Autoimmunity and atopic dermatitis. Current Opinion in Allergy and Clinical Immunology, 2004, 4, 367-371.	2.3	74
40	Characterization of a Novel Isoform of $\hat{I}\pm$ -Nascent Polypeptide-associated Complex as IgE-defined Autoantigen. Journal of Investigative Dermatology, 2002, 119, 820-829.	0.7	37
41	Identification of pronp1, a tobacco profilin gene activated in tip-growing cells. Plant Molecular Biology, 2001, 46, 531-538.	3.9	13
42	Oligomerization of profilins from birch, man and yeast. Profilin, a ligand for itself?. Sexual Plant Reproduction, 1998, 11, 183-191.	2.2	20
43	Microinjection of profilins from different sources into the green algaMicrasterias causes transient inhibition of cell growth. Protoplasma, 1997, 199, 124-134.	2.1	18
44	High-Level Expression inEscherichia coliand Purification of Recombinant Plant Profilins: Comparison of IgE-Binding Capacity and Allergenic Activity. Biochemical and Biophysical Research Communications, 1996, 226, 42-50.	2.1	20
45	Molecular characterization of profilin isoforms from tobacco (Nicotiana tabacum) pollen. Sexual Plant Reproduction, 1996, 9, 133-139.	2.2	14
46	Immunocytochemical localisation of actin and profilin in the generative cell of angiosperm pollen: TEM studies on high-pressure frozen and freeze-substitutedLedebouria socialis Roth (Hyacinthaceae). Histochemistry and Cell Biology, 1995, 104, 443-451.	1.7	22
47	Molecular cloning and characterization of profilin from tobacco (Nicotiana tabacum): increased profilin expression during pollen maturation. Plant Molecular Biology, 1995, 27, 137-146.	3.9	87