
Frédéric Bigey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5382347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for Two Main Domestication Trajectories in Saccharomyces cerevisiae Linked to Distinct Bread-Making Processes. Current Biology, 2021, 31, 722-732.e5.	3.9	43
2	The yeast mating-type switching endonuclease HO is a domesticated member of an unorthodox homing genetic element family. ELife, 2020, 9, .	6.0	15
3	Relief from nitrogen starvation entails quick unexpected down-regulation of glycolytic/lipid metabolism genes in enological Saccharomyces cerevisiae. PLoS ONE, 2019, 14, e0215870.	2.5	1
4	Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in <i>Saccharomyces cerevisiae</i> cells. Molecular Biology of the Cell, 2018, 29, 490-498.	2.1	7
5	Genome Sequence of Torulaspora microellipsoides CLIB 830 ^T . Genome Announcements, 2018, 6, .	0.8	5
6	Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Molecular Biology and Evolution, 2018, 35, 1712-1727.	8.9	214
7	Genomic signatures of adaptation to wine biological ageing conditions in biofilmâ€forming flor yeasts. Molecular Ecology, 2017, 26, 2150-2166.	3.9	68
8	Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts. Molecular Biology and Evolution, 2015, 32, 1695-1707.	8.9	165
9	Natural Yeast Promoter Variants Reveal Epistasis in the Generation of Transcriptional-Mediated Noise and Its Potential Benefit in Stressful Conditions. Genome Biology and Evolution, 2015, 7, 969-984.	2.5	49
10	Intrastrain genomic and phenotypic variability of the commercial <i>Saccharomyces cerevisiae</i> strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments. FEMS Yeast Research, 2015, 15, fov063.	2.3	32
11	A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling. BMC Genomics, 2014, 15, 495.	2.8	99
12	Genome Sequence of the Food Spoilage Yeast Zygosaccharomyces bailii CLIB 213 T. Genome Announcements, 2013, 1, .	0.8	39
13	Deciphering the Molecular Basis of Wine Yeast Fermentation Traits Using a Combined Genetic and Genomic Approach. G3: Genes, Genomes, Genetics, 2011, 1, 263-281.	1.8	103
14	Amplification of a Zygosaccharomyces bailii DNA Segment in Wine Yeast Genomes by Extrachromosomal Circular DNA Formation. PLoS ONE, 2011, 6, e17872.	2.5	70
15	Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits. PLoS ONE, 2011, 6, e25147.	2.5	93
16	Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16333-16338.	7.1	438
17	Simple indicators of plasmid loss during fermentation of Bacillus thuringiensis. Enzyme and Microbial Technology, 2007, 40, 1052-1058.	3.2	6
18	Production of a recombinant carotenoid cleavage dioxygenase from grape and enzyme assay in water-miscible organic solvents. Biotechnology Letters, 2007, 29, 837-841.	2.2	23

Frédéric Bigey

#	Article	IF	CITATIONS
19	Overexpression and characterization of two human salivary proline rich proteins. Protein Expression and Purification, 2006, 47, 524-532.	1.3	22
20	Vitis vinifera carotenoid cleavage dioxygenase (VvCCD1): gene expression during grape berry development and cleavage of carotenoids by recombinant protein. Developments in Food Science, 2006, 43, 85-88.	0.0	0
21	A novel lipase/acyltransferase from the yeast Candida albicans: expression and characterisation of the recombinant enzyme. Applied Microbiology and Biotechnology, 2005, 68, 203-212.	3.6	22
22	A Carotenoid Cleavage Dioxygenase from Vitis vinifera L: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. Journal of Experimental Botany, 2005, 56, 2721-2731.	4.8	205
23	Overexpression of ovine leptin inPichia pastoris: physiological yeast response to leptin production and characterization of the recombinant hormone. Yeast, 2004, 21, 249-263.	1.7	18
24	High-level expression of Candida parapsilosis lipase/acyltransferase in Pichia pastoris. Journal of Biotechnology, 2004, 111, 41-50.	3.8	74
25	Identification of a triacylglycerol lipase gene family inCandida deformans: molecular cloning and functional expression. Yeast, 2003, 20, 233-248.	1.7	45
26	The lipase/acyltransferase fromCandida parapsilosis. FEBS Journal, 2002, 269, 1734-1745.	0.2	67
27	Transcriptional analysis of the nitrileâ€degrading operon from Rhodococcus sp. ACV2 and high level production of recombinant amidase with an Escherichia coli – T7 expression system. Journal of Applied Microbiology, 1999, 86, 752-760.	3.1	16
28	Acyl Transfer Activity of an Amidase from <i>Rhodococcus</i> sp. Strain R312: Formation of a Wide Range of Hydroxamic Acids. Applied and Environmental Microbiology, 1998, 64, 2844-2852.	3.1	72
29	Biocatalyst improvement for the production of short-chain hydroxamic acids. Enzyme and Microbial Technology, 1997, 20, 424-431.	3.2	24
30	Spectrophotometric assay of aliphatic monohydroxamic acids and α-, β-, and γ-aminohydroxamic acids in aqueous medium. Analytica Chimica Acta, 1997, 353, 359-366.	5.4	15
31	Amide metabolism: a putative ABC transporter in Rhodococcus sp. R312. Gene, 1996, 182, 215-218.	2.2	18
32	Study of the amidase signature group. BBA - Proteins and Proteomics, 1996, 1298, 285-293.	2.1	121
33	Sizing of theRhodococcus sp. R312 genome by pulsed-field gel electrophoresis. Localization of genes involved in nitrile degradation. Antonie Van Leeuwenhoek, 1995, 68, 173-179.	1.7	16
34	Karyotype studies on different strains of Candida molischiana by pulsed-field gel electrophoresis. Current Genetics, 1995, 28, 150-154.	1.7	7
35	Brevibacterium linens pBL33 and Rhodococcus rhodochrous pRC1 cryptic plasmids replicate in Rhodococcus sp. R312 (formerly Brevibacterium sp. R312). Gene, 1995, 154, 77-79.	2.2	6
36	Cloning of the wide spectrum amidase gene fromBrevibacteriumsp. R312 by genetic complementation. Overexpression inBrevibacteriumsp. andEscherichia coli. FEMS Microbiology Letters, 1994, 122, 129-136.	1.8	10