Stanislav Kmoch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5382065/publications.pdf

Version: 2024-02-01

109321 4,478 100 35 citations h-index papers

g-index 103 103 103 6328 docs citations times ranked citing authors all docs

118850

62

#	Article	IF	CITATIONS
1	A mutation in the SAA1 promoter causes hereditary amyloid A amyloidosis. Kidney International, 2022, 101, 349-359.	5.2	10
2	The utility of a genetic kidney disease clinic employing a broad range of genomic testing platforms: experience of the Irish Kidney Gene Project. Journal of Nephrology, 2022, 35, 1655-1665.	2.0	14
3	Phenylbutyrate rescues the transport defect of the Sec $61\hat{l}\pm$ mutations V67G and T185A for renin. Life Science Alliance, 2022, 5, e202101150.	2.8	9
4	Genetic Etiologies for Chronic Kidney Disease Revealed through Next-Generation Renal Gene Panel. American Journal of Nephrology, 2022, 53, 297-306.	3.1	21
5	POLRMT mutations impair mitochondrial transcription causing neurological disease. Nature Communications, 2021, 12, 1135.	12.8	21
6	Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy. Journal of Clinical Investigation, 2021, 131, .	8.2	16
7	Non-Penetrance for Ocular Phenotype in Two Individuals Carrying Heterozygous Loss-of-Function ZEB1 Alleles. Genes, 2021, 12, 677.	2.4	3
8	Elucidation of a novel mechanism for faulty protein retention and a therapeutic strategy for facilitated lysosomal removal. FASEB Journal, 2021, 35, .	0.5	0
9	Autosomal dominant tubulointerstitial kidney disease: more than just ${\sf HNF1\^{l}^2}$. Pediatric Nephrology, 2021, , 1.	1.7	8
10	Plasma Mucin-1 (CA15-3) Levels in Autosomal Dominant Tubulointerstitial Kidney Disease due to & lt;b> <i>MUC1</i> Mutations. American Journal of Nephrology, 2021, 52, 378-387.	3.1	4
11	Ultrabright plasmonic fluor nanolabel-enabled detection of a urinary ER stress biomarker in autosomal dominant tubulointerstitial kidney disease. American Journal of Physiology - Renal Physiology, 2021, 321, F236-F244.	2.7	5
12	Mitochondriopathy Manifesting as Inherited Tubulointerstitial Nephropathy Without Symptomatic Other Organ Involvement. Kidney International Reports, 2021, 6, 2514-2518.	0.8	5
13	Outcomes of patient self-referral for the diagnosis of several rare inherited kidney diseases. Genetics in Medicine, 2020, 22, 142-149.	2.4	11
14	Autosomal-dominant adult neuronal ceroid lipofuscinosis caused by duplication in DNAJC5 initially missed by Sanger and whole-exome sequencing. European Journal of Human Genetics, 2020, 28, 783-789.	2.8	10
15	Alu â€mediated Xq24 deletion encompassing CUL4B , LAMP2 , ATP1B4 , TMEM255A , and ZBTB33 genes causes Danon disease in a female patient. American Journal of Medical Genetics, Part A, 2020, 182, 219-223.	1.2	9
16	Ntrk1 mutation co-segregating with bipolar disorder and inherited kidney disease in a multiplex family causes defects in neuronal growth and depression-like behavior in mice. Translational Psychiatry, 2020, 10, 407.	4.8	14
17	An international cohort study of autosomal dominant tubulointerstitial kidney disease due to mutations identifies distinct clinical subtypes. Kidney International, 2020, 98, 1589-1604.	5.2	27
18	Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain, 2020, 143, 2437-2453.	7.6	21

#	Article	IF	CITATIONS
19	Genetic and Clinical Predictors of Age of ESKD in Individuals With Autosomal Dominant Tubulointerstitial Kidney Disease Due to UMOD Mutations. Kidney International Reports, 2020, 5, 1472-1485.	0.8	30
20	The Varied Clinical Presentation of Autosomal Dominant Tubulointerstitial Kidney Disease Due to $\rm HNF1\hat{l}^2$ Mutations. Kidney International Reports, 2020, 5, 2133-2135.	0.8	3
21	Renal transplant outcomes in patients with autosomal dominant tubulointerstitial kidney disease. Clinical Transplantation, 2020, 34, e13783.	1.6	2
22	Multigene Panel Germline Testing of 1333 Czech Patients with Ovarian Cancer. Cancers, 2020, 12, 956.	3.7	19
23	Spinal muscular atrophy caused by a novel <i>Alu</i> â€mediated deletion of exons 2aâ€5 in <i>SMN1</i> undetectable with routine genetic testing. Molecular Genetics & Samp; Genomic Medicine, 2020, 8, e1238.	1.2	10
24	Desminopathy: Novel Desmin Variants, a New Cardiac Phenotype, and Further Evidence for Secondary Mitochondrial Dysfunction. Journal of Clinical Medicine, 2020, 9, 937.	2.4	24
25	Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutationsÂin UMOD and MUC1. Kidney International, 2020, 98, 717-731.	5. 2	75
26	Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell, 2019, 178, 521-535.e23.	28.9	124
27	PAICS deficiency, a new defect of de novo purine synthesis resulting in multiple congenital anomalies and fatal outcome. Human Molecular Genetics, 2019, 28, 3805-3814.	2.9	22
28	Autosomal dominant tubulointerstitial kidney disease. Nature Reviews Disease Primers, 2019, 5, 60.	30.5	139
29	Identification of deleterious germline <i>CHEK2</i> mutations and their association with breast and ovarian cancer. International Journal of Cancer, 2019, 145, 1782-1797.	5.1	62
30	Rare copy number variation in extremely impulsively violent males. Genes, Brain and Behavior, 2019, 18, e12536.	2.2	9
31	POLR3B-associated leukodystrophy: clinical, neuroimaging and molecular-genetic analyses in four patients: clinical heterogeneity and novel mutations in POLR3B gene. Neurologia I Neurochirurgia Polska, 2019, 53, 369-376.	1.2	0
32	Genetic architecture of recent-onset dilated cardiomyopathy in Moravian region assessed by whole-exome sequencing and its clinical correlates. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2019, 163, 309-317.	0.6	1
33	Ectopic GRHL2 Expression Due to Non-coding Mutations Promotes Cell State Transition and Causes Posterior Polymorphous Corneal Dystrophy 4. American Journal of Human Genetics, 2018, 102, 447-459.	6.2	45
34	Teenage-onset progressive myoclonic epilepsy due to a familial C9orf72 repeat expansion. Neurology, 2018, 90, e658-e663.	1.1	9
35	Study of purinosome assembly in cell-based model systems with de novo purine synthesis and salvage pathway deficiencies. PLoS ONE, 2018, 13, e0201432.	2.5	8
36	Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrology, 2018, 19, 301.	1.8	39

#	Article	IF	Citations
37	<i>LAMP2</i> exon opy number variations in Danon disease heterozygote female probands: Infrequent or underdetected?. American Journal of Medical Genetics, Part A, 2018, 176, 2430-2434.	1.2	9
38	Noninvasive Immunohistochemical Diagnosis and Novel MUC1 Mutations Causing Autosomal Dominant Tubulointerstitial Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 2418-2431.	6.1	38
39	Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PLoS ONE, 2018, 13, e0195761.	2.5	31
40	Clinical manifestations and molecular aspects of phosphoribosylpyrophosphate synthetase superactivity in females. Rheumatology, 2018, 57, 1180-1185.	1.9	12
41	Autosomal Dominant Tubulointerstitial Kidney Disease. Advances in Chronic Kidney Disease, 2017, 24, 86-93.	1.4	60
42	Elevated urinary CRELD2 is associated with endoplasmic reticulum stress–mediated kidney disease. JCI Insight, 2017, 2, .	5.0	32
43	Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia. American Journal of Human Genetics, 2016, 99, 174-187.	6.2	124
44	The clinical, biochemical and genetic features associated with <i>RMND1</i> related mitochondrial disease. Journal of Medical Genetics, 2016, 53, 768-775.	3.2	35
45	Development and Validation of a Mass Spectrometry–Based Assay for the Molecular Diagnosis of Mucin-1 Kidney Disease. Journal of Molecular Diagnostics, 2016, 18, 566-571.	2.8	25
46	CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation. Molecular Genetics and Metabolism, 2016, 119, 270-277.	1.1	33
47	Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6. Human Molecular Genetics, 2016, 25, 4062-4079.	2.9	55
48	Diagnosis and misdiagnosis of adult neuronal ceroid lipofuscinosis (Kufs disease). Neurology, 2016, 87, 579-584.	1.1	28
49	Rare variants in known and novel candidate genes predisposing to statin-associated myopathy. Pharmacogenomics, 2016, 17, 1405-1414.	1.3	17
50	Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non-coding Mutations in the Promoter of OVOL2. American Journal of Human Genetics, 2016, 98, 75-89.	6.2	70
51	Tamm Horsfall Glycoprotein and Uromodulin. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 6-8.	4.5	18
52	Adenylosuccinate lyase deficiency. Journal of Inherited Metabolic Disease, 2015, 38, 231-242.	3.6	119
53	Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and managementâ€"A KDIGO consensus report. Kidney International, 2015, 88, 676-683.	5.2	276
54	A patient showing features of both SBBYSS and GPS supports the concept of a KAT6B-related disease spectrum, with mutations in mid-exon 18 possibly leading to combined phenotypes. European Journal of Medical Genetics, 2015, 58, 550-555.	1.3	25

#	Article	IF	CITATIONS
55	Screening for adenylosuccinate lyase deficiency using tandem mass spectrometry analysis of succinylpurines in neonatal dried blood spots. Clinical Biochemistry, 2015, 48, 2-7.	1.9	7
56	Autosomal dominant tubulointerstitial kidney disease: of names and genes. Kidney International, 2014, 86, 459-461.	5.2	31
57	Variable Clinical Presentation of an MUC1 Mutation Causing Medullary Cystic Kidney Disease Type 1. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 527-535.	4.5	65
58	Mutation of Nogo-B Receptor, a Subunit of cis-Prenyltransferase, Causes a Congenital Disorder of Glycosylation. Cell Metabolism, 2014, 20, 448-457.	16.2	104
59	The need for vigilance: False-negative screening for adenylosuccinate lyase deficiency caused by deribosylation of urinary biomarkers. Clinical Biochemistry, 2013, 46, 1899-1901.	1.9	7
60	Cerebellar dysfunction in a family harboring the PSEN1 mutation co-segregating with a Cathepsin D variant p.A58V. Journal of the Neurological Sciences, 2013, 326, 75-82.	0.6	18
61	Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1831-1841.	3.8	10
62	Mutations in ANTXR1 Cause GAPO Syndrome. American Journal of Human Genetics, 2013, 92, 792-799.	6.2	73
63	Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: Cellular models of de novo purine biosynthesis deficiency disorders. Molecular Genetics and Metabolism, 2013, 108, 178-189.	1.1	14
64	Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nature Genetics, 2013, 45, 299-303.	21.4	237
65	Isolated X-Linked Hypertrophic Cardiomyopathy Caused by a Novel Mutation of the Four-and-a-Half LIM Domain 1 Gene. Circulation: Cardiovascular Genetics, 2013, 6, 543-551.	5.1	43
66	Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency. Human Molecular Genetics, 2012, 21, 1534-1543.	2.9	62
67	Adaptation of respiratory chain biogenesis to cytochrome c oxidase deficiency caused by SURF1 gene mutations. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1114-1124.	3.8	30
68	Gout: A Step Forward. Advances in Chronic Kidney Disease, 2012, 19, 356-357.	1.4	0
69	Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. Journal of Clinical Investigation, 2012, 122, 519-528.	8.2	321
70	Compensatory upregulation of respiratory chain complexes III and IV in isolated deficiency of ATP synthase due to TMEM70 mutation. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1037-1043.	1.0	32
71	Molecular characterization of the Adel mutant of Chinese hamster ovary cells: A cellular model of adenylosuccinate lyase deficiency. Molecular Genetics and Metabolism, 2011, 102, 61-68.	1.1	9
72	Expression and processing of the TMEM70 protein. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 144-149.	1.0	26

#	Article	IF	CITATIONS
73	Mutations in DNAJC5, Encoding Cysteine-String Protein Alpha, Cause Autosomal-Dominant Adult-Onset Neuronal Ceroid Lipofuscinosis. American Journal of Human Genetics, 2011, 89, 241-252.	6.2	236
74	Mutations in DNAJC5, Encoding Cysteine-String Protein Alpha, Cause Autosomal-Dominant Adult-Onset Neuronal Ceroid Lipofuscinosis. American Journal of Human Genetics, 2011, 89, 589.	6.2	4
75	Detection of viral infections by an oligonucleotide microarray. Journal of Virological Methods, 2010, 165, 64-70.	2.1	12
76	Genetic disorders of mitochondrial ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 47-48.	1.0	1
77	Biochemical and structural analysis of 14 mutant adsl enzyme complexes and correlation to phenotypic heterogeneity of adenylosuccinate lyase deficiency. Human Mutation, 2010, 31, 445-455.	2.5	45
78	Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Archives of Disease in Childhood, 2010, 95, 296-301.	1.9	72
79	Uromodulin Biology and Pathophysiology – An Update. Kidney and Blood Pressure Research, 2010, 33, 456-475.	2.0	71
80	Hereditary Interstitial Kidney Disease. Seminars in Nephrology, 2010, 30, 366-373.	1.6	36
81	Uromodulin-Associated Kidney Disease. Nephron Clinical Practice, 2010, 118, c31-c36.	2.3	44
82	Biochemicalâ€structuralâ€phenotypic correlation of adenylosuccinate lyase deficiency based on analysis of mutant enzyme complexes. FASEB Journal, 2010, 24, 889.7.	0.5	0
83	TMEM70 protein â€" A novel ancillary factor of mammalian ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 529-532.	1.0	37
84	Sanfilippo syndrome type C: mutation spectrum in the heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (<i>HGSNAT</i>) gene. Human Mutation, 2009, 30, 918-925.	2.5	51
85	Dominant Renin Gene Mutations Associated with Early-Onset Hyperuricemia, Anemia, and Chronic Kidney Failure. American Journal of Human Genetics, 2009, 85, 204-213.	6.2	146
86	Adhesion of osteoblasts on chemically patterned nanocrystalline diamonds. Physica Status Solidi (B): Basic Research, 2008, 245, 2124-2127.	1.5	36
87	TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nature Genetics, 2008, 40, 1288-1290.	21.4	183
88	Development of a human mitochondrial oligonucleotide microarray (h-MitoArray) and gene expression analysis of fibroblast cell lines from 13 patients with isolated F1Fo ATP synthase deficiency. BMC Genomics, 2008, 9, 38.	2.8	22
89	HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. Carcinogenesis, 2008, 29, 1528-1537.	2.8	84
90	Clinical, biochemical and molecular findings in seven Polish patients with adenylosuccinate lyase deficiency. Molecular Genetics and Metabolism, 2008, 94, 435-442.	1.1	62

#	Article	IF	CITATIONS
91	Rotor-type hyperbilirubinaemia has no defect in the canalicular bilirubin export pump. Liver International, 2007, 27, 485-491.	3.9	22
92	Lethal Fetal and Early Neonatal Presentation of Adenylosuccinate Lyase Deficiency: Observation of 6 Patients in 4 Families. Journal of Pediatrics, 2007, 150, 57-61.e2.	1.8	58
93	Mutations in TMEM76* Cause Mucopolysaccharidosis IIIC (Sanfilippo C Syndrome). American Journal of Human Genetics, 2006, 79, 807-819.	6.2	77
94	Mapping of a new candidate locus for uromodulin-associated kidney disease (UAKD) to chromosome 1q41. Kidney International, 2005, 68, 1472-1482.	5.2	28
95	Posterior Polymorphous Corneal Dystrophy in Czech Families Maps to Chromosome 20 and Excludes the VSX1 Gene., 2005, 46, 4480.		67
96	Familial juvenile hyperuricaemic nephropathy (FJHN): linkage analysis in 15 families, physical and transcriptional characterisation of the FJHN critical region on chromosome $16p11.2$ and the analysis of seven candidate genes. European Journal of Human Genetics, 2003 , 11 , $145-154$.	2.8	25
97	Familial Juvenile Hyperuricemic Nephropathy: Localization of the Gene on Chromosome 16p11.2â€"and Evidence for Genetic Heterogeneity. American Journal of Human Genetics, 2000, 66, 1989-1994.	6.2	51
98	Identification and determination of succinyladenosine in human cerebrospinal fluid. Biomedical Applications, 1999, 726, 53-58.	1.7	19
99	A Survey of the Newborn Populations in Belgium, Germany, Poland, Czech Republic, Hungary, Bulgaria, Spain, Turkey, and Japan for the G985 Variant Allele with Haplotype Analysis at the Medium Chain Acyl-CoA. Pediatric Research, 1997, 41, 201-209.	2.3	60
100	Urinary Pterins in Lesch-Nyhan Syndrome. Advances in Experimental Medicine and Biology, 1991, 309B, 261-264.	1.6	3