Chengqian Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5381983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-Free Nanoassemblies of Water-Soluble Photosensitizer and Adenosine Triphosphate for Efficient and Precise Photodynamic Cancer Therapy. ACS Nano, 2021, 15, 4979-4988.	14.6	52
2	Supramolecular Nanofibrils Formed by Coassembly of Clinically Approved Drugs for Tumor Photothermal Immunotherapy. Advanced Materials, 2021, 33, e2100595.	21.0	105
3	Injectable self-assembled bola-dipeptide hydrogels for sustained photodynamic prodrug delivery and enhanced tumor therapy. Journal of Controlled Release, 2020, 319, 344-351.	9.9	52
4	Acidâ€Activatable Transmorphic Peptideâ€Based Nanomaterials for Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 20582-20588.	13.8	134
5	Acidâ€Activatable Transmorphic Peptideâ€Based Nanomaterials for Photodynamic Therapy. Angewandte Chemie, 2020, 132, 20763-20769.	2.0	28
6	Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. ACS Nano, 2020, 14, 10704-10715.	14.6	61
7	Tumor therapy based on selfâ€assembling peptides nanotechnology. View, 2020, 1, 20200020.	5.3	20
8	Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials. ACS Nano, 2020, 14, 7181-7190.	14.6	62
9	Porphyrin/Ionicâ€Liquid Coâ€assembly Polymorphism Controlled by Liquid–Liquid Phase Separation. Angewandte Chemie - International Edition, 2020, 59, 17456-17460.	13.8	42
10	Porphyrin/Ionicâ€Liquid Coâ€assembly Polymorphism Controlled by Liquid–Liquid Phase Separation. Angewandte Chemie, 2020, 132, 17609-17613.	2.0	12
11	Multifunctional Antimicrobial Biometallohydrogels Based on Amino Acid Coordinated Selfâ€Assembly. Small, 2020, 16, e1907309.	10.0	196
12	Deciphering the structure-property relationship in coumarin-based supramolecular organogel materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124744.	4.7	9
13	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie - International Edition, 2019, 58, 18116-18123.	13.8	241
14	Innenrücktitelbild: Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation (Angew. Chem. 50/2019). Angewandte Chemie, 2019, 131, 18463-18463.	2.0	0
15	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie, 2019, 131, 18284-18291.	2.0	79
16	Hierarchically oriented organization inÂsupramolecular peptide crystals. Nature Reviews Chemistry, 2019, 3, 567-588.	30.2	326
17	Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy. Journal of Colloid and Interface Science, 2019, 557, 458-464.	9.4	21
18	The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie - International Edition, 2019, 58, 5872-5876.	13.8	72

CHENGQIAN YUAN

#	Article	IF	CITATIONS
19	The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie, 2019, 131, 5930-5934.	2.0	9
20	Stoichiometry-controlled secondary structure transition of amyloid-derived supramolecular dipeptide co-assemblies. Communications Chemistry, 2019, 2, .	4.5	40
21	Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular Self-Assembly. ACS Nano, 2019, 13, 7300-7309.	14.6	121
22	Frontispiz: The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie, 2019, 131, .	2.0	0
23	Selfâ€Assembling Endogenous Biliverdin as a Versatile Nearâ€Infrared Photothermal Nanoagent for Cancer Theranostics. Advanced Materials, 2019, 31, e1900822.	21.0	249
24	Frontispiece: The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
25	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€5heet to αâ€Helix. Angewandte Chemie, 2018, 130, 1553-1558.	2.0	28
26	Crystalline Dipeptide Nanobelts Based on Solid–Solid Phase Transformation Self-Assembly and Their Polarization Imaging of Cells. ACS Applied Materials & Interfaces, 2018, 10, 2368-2376.	8.0	98
27	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Sheet to αâ€Helix. Angewandte Chemie - International Edition, 2018, 57, 1537-1542.	13.8	192
28	Amino Acid Coordination Driven Selfâ€Assembly for Enhancing both the Biological Stability and Tumor Accumulation of Curcumin. Angewandte Chemie, 2018, 130, 17330-17334.	2.0	29
29	Amino Acid Coordination Driven Selfâ€Assembly for Enhancing both the Biological Stability and Tumor Accumulation of Curcumin. Angewandte Chemie - International Edition, 2018, 57, 17084-17088.	13.8	185
30	Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self-Assembly. Journal of the American Chemical Society, 2018, 140, 10794-10802.	13.7	377
31	Multiscale simulations for understanding the evolution and mechanism of hierarchical peptide self-assembly. Physical Chemistry Chemical Physics, 2017, 19, 23614-23631.	2.8	48
32	Selfâ€Assembled Zinc/Cystineâ€Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. Angewandte Chemie, 2017, 129, 7984-7988.	2.0	36
33	Selfâ€Assembled Zinc/Cystineâ€Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. Angewandte Chemie - International Edition, 2017, 56, 7876-7880.	13.8	176
34	Trace Water as Prominent Factor to Induce Peptide Selfâ€Assembly: Dynamic Evolution and Governing Interactions in Ionic Liquids. Small, 2017, 13, 1702175.	10.0	49