Guoliang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5381519/publications.pdf

Version: 2024-02-01

109321 138484 3,539 69 35 58 citations g-index h-index papers 69 69 69 2434 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nonreciprocity in acoustic and elastic materials. Nature Reviews Materials, 2020, 5, 667-685.	48.7	243
2	A hybrid elastic metamaterial with negative mass density and tunable bending stiffness. Journal of the Mechanics and Physics of Solids, 2017, 105, 179-198.	4.8	185
3	Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice. Physical Review Letters, 2018, 121, 194301.	7.8	155
4	Magnetoactive Acoustic Metamaterials. Advanced Materials, 2018, 30, e1706348.	21.0	142
5	Focusing guided waves using surface bonded elastic metamaterials. Applied Physics Letters, 2013, 103, .	3.3	139
6	Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 205-213.	7.1	131
7	Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model. Journal of the Acoustical Society of America, 2014, 136, 969-979.	1.1	118
8	Pencil–paper on-skin electronics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18292-18301.	7.1	118
9	Laserâ€Induced Graphene for Electrothermally Controlled, Mechanically Guided, 3D Assembly and Human–Soft Actuators Interaction. Advanced Materials, 2020, 32, e1908475.	21.0	118
10	Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. Journal of Sound and Vibration, 2019, 442, 237-248.	3.9	100
11	Non-reciprocal wave propagation in modulated elastic metamaterials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170188.	2.1	99
12	Nonreciprocal Wave Propagation in a Continuum-Based Metamaterial with Space-Time Modulated Resonators. Physical Review Applied, 2019, 11, .	3.8	97
13	A programmable metasurface for real time control of broadband elastic rays. Smart Materials and Structures, 2018, 27, 115011.	3. 5	93
14	Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model. Journal of the Acoustical Society of America, 2014, 136, 2926-2934.	1.1	92
15	Experimental demonstration of a dissipative multi-resonator metamaterial for broadband elastic wave attenuation. Journal of Sound and Vibration, 2019, 438, 1-12.	3.9	90
16	Bistable Structures for Advanced Functional Systems. Advanced Functional Materials, 2021, 31, 2106231.	14.9	79
17	A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation. Smart Materials and Structures, 2018, 27, 045015.	3.5	74
18	Acoustic metamaterials capable of both sound insulation and energy harvesting. Smart Materials and Structures, 2016, 25, 045013.	3 . 5	70

#	Article	IF	Citations
19	A design of active elastic metamaterials for control of flexural waves using the transformation method. Journal of Intelligent Material Systems and Structures, 2016, 27, 1337-1347.	2.5	61
20	Quantitative Modeling of Coupled Piezo-Elastodynamic Behavior of Piezoelectric Actuators Bonded to an Elastic Medium for Structural Health Monitoring: A Review. Sensors, 2010, 10, 3681-3702.	3.8	60
21	A nonlinear dissipative elastic metamaterial for broadband wave mitigation. International Journal of Mechanical Sciences, 2019, 164, 105159.	6.7	59
22	An active mechanical Willis meta-layer with asymmetric polarizabilities. Nature Communications, 2020, 11, 3681.	12.8	56
23	Optimal quantum valley Hall insulators by rationally engineering Berry curvature and band structure. Journal of the Mechanics and Physics of Solids, 2020, 135, 103784.	4.8	52
24	Effective medium theory of thin-plate acoustic metamaterials. Journal of the Acoustical Society of America, 2014, 135, 1844-1852.	1.1	51
25	Physical Realization of Elastic Cloaking with a Polar Material. Physical Review Letters, 2020, 124, 114301.	7.8	51
26	Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials. Journal of the Acoustical Society of America, 2012, 132, 2800-2806.	1.1	50
27	Actively tunable transverse waves in soft membrane-type acoustic metamaterials. Journal of Applied Physics, 2018, 123, .	2.5	50
28	Realization of active metamaterials with odd micropolar elasticity. Nature Communications, 2021, 12, 5935.	12.8	50
29	Broadband acoustic silencer with ventilation based on slit-type Helmholtz resonators. Applied Physics Letters, 2020, 117, .	3.3	49
30	Elastic metamaterial-based seismic shield for both Lamb and surface waves. AIP Advances, 2017, 7, .	1.3	48
31	Physical Observation of a Robust Acoustic Pumping in Waveguides with Dynamic Boundary. Physical Review Letters, 2020, 125, 253901.	7.8	47
32	In-Plane Second-Order Topologically Protected States in Elastic Kagome Lattices. Physical Review Applied, 2020, 14, .	3.8	46
33	Asymmetric scattering of flexural waves in a parity-time symmetric metamaterial beam. Journal of the Acoustical Society of America, 2019, 146, 850-862.	1.1	42
34	An active meta-layer for optimal flexural wave absorption and cloaking. Mechanical Systems and Signal Processing, 2021, 149, 107324.	8.0	42
35	Polar Metamaterials: A New Outlook on Resonance for Cloaking Applications. Physical Review Letters, 2020, 124, 084301.	7.8	37
36	Elastic wave manipulation by using a phase-controlling meta-layer. Journal of Applied Physics, 2018, 123,	2.5	35

#	Article	IF	CITATIONS
37	Non-reciprocal Rayleigh wave propagation in space–time modulated surface. Journal of the Mechanics and Physics of Solids, 2021, 146, 104196.	4.8	31
38	Creating synthetic spaces for higher-order topological sound transport. Nature Communications, 2021, 12, 5028.	12.8	31
39	A flapping vortex generator for heat transfer enhancement in a rectangular airside fin. International Journal of Heat and Mass Transfer, 2018, 118, 1340-1356.	4.8	30
40	Shaping elastic wave mode conversion with a piezoelectric-based programmable meta-boundary. Extreme Mechanics Letters, 2020, 39, 100837.	4.1	29
41	Core–skin debonding detection in honeycomb sandwich structures through guided wave wavefield analysis. Journal of Intelligent Material Systems and Structures, 2019, 30, 1306-1317.	2.5	28
42	Multifunctional Metamaterials for Energy Harvesting and Vibration Control. Advanced Functional Materials, 2022, 32, 2107896.	14.9	28
43	A metamaterial beam with inverse nonlinearity for broadband micro-vibration attenuation. Mechanical Systems and Signal Processing, 2021, 159, 107826.	8.0	27
44	Topology optimization of phononic crystals with uncertainties. Structural and Multidisciplinary Optimization, 2017, 56, 1319-1339.	3.5	26
45	Broadband low-frequency sound isolation by lightweight adaptive metamaterials. Journal of Applied Physics, 2018, 123, .	2.5	25
46	A polynomialâ€based method for topology optimization of phononic crystals with unknownâ€butâ€bounded parameters. International Journal for Numerical Methods in Engineering, 2018, 114, 777-800.	2.8	23
47	Deterministic Self-Morphing of Soft-Stiff Hybridized Polymeric Films for Acoustic Metamaterials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13378-13385.	8.0	23
48	A broadband acoustic panel based on double-layer membrane-type metamaterials. Applied Physics Letters, 2021, 118, .	3.3	22
49	Healable, memorizable, and transformable lattice structures made of stiff polymers. NPG Asia Materials, 2020, 12, .	7.9	18
50	A modified smoothed finite element method (M-SFEM) for analyzing the band gap in phononic crystals. Acta Mechanica, 2019, 230, 2279-2293.	2.1	17
51	Airfoil-shaped self-agitator for convective heat transfer enhancement. International Journal of Thermal Sciences, 2018, 133, 284-298.	4.9	16
52	Air-side heat transfer enhancement in plate-fin channel with an airfoil-based self-agitator. International Journal of Heat and Mass Transfer, 2019, 128, 715-727.	4.8	13
53	Discrete transformation elasticity: An approach to design lattice-based polar metamaterials. International Journal of Engineering Science, 2021, 168, 103562.	5.0	13
54	Independent Flexural Wave Frequency Conversion by a Linear Active Metalayer. Physical Review Letters, 2022, 128, .	7.8	13

#	Article	IF	CITATIONS
55	A novel non-linear cumulative fatigue damage model based on the degradation of material memory. International Journal of Damage Mechanics, 2020, 29, 610-625.	4.2	11
56	Microtwist elasticity: A continuum approach to zero modes and topological polarization in Kagome lattices. Journal of the Mechanics and Physics of Solids, 2020, 144, 104107.	4.8	11
57	A physics-guided machine learning for multifunctional wave control in active metabeams. Extreme Mechanics Letters, 2022, 55, 101827.	4.1	11
58	High-Efficiency Elastic Wave Rectifier in One-Dimensional Linear Magnetoelastic Phononic Crystal Slabs by an External Magnetostatic Field. Physical Review Applied, 2020, 13, .	3.8	9
59	Tuning characteristics of a metamaterial beamÂwith lateral-electric-fieldÂpiezoelectric shuntings. Journal of Sound and Vibration, 2021, 491, 115738.	3.9	9
60	Introduction to the special issue on non-reciprocal and topological wave phenomena in acoustics. Journal of the Acoustical Society of America, 2019, 146, 719-720.	1.1	8
61	Solitary waves in a granular chain of elastic spheres: Multiple solitary solutions and their stabilities. Physical Review E, 2019, 99, 062904.	2.1	8
62	Reprogrammable 3D Shaping from Phase Change Microstructures in Elastic Composites. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4014-4021.	8.0	6
63	Omnidirectional wave polarization manipulation in isotropic polar solids. International Journal of Solids and Structures, 2022, 241, 111481.	2.7	6
64	Photonic Nanostructures Design and Optimization for Solar Cell Application. Photonics, 2015, 2, 893-905.	2.0	5
65	Bio-inspired self-agitator for convective heat transfer enhancement. Applied Physics Letters, 2018, 113, .	3.3	5
66	Analytical solutions of solitary waves and their collision stability in a pre-compressed one-dimensional granular crystal. Nonlinear Dynamics, 2021, 104, 4293-4309.	5. 2	4
67	Microtwist homogenization of three-dimensional Pyrochlore lattices on zero modes and mechanical polarization. Journal of the Mechanics and Physics of Solids, 2021, 155, 104564.	4.8	3
68	力电耦å•̂主动超ææ−™åδ̃å…¶å⅓¹æ€§æ³¢è°ƒæŽ§. Chinese Science Bulletin, 2021, , .	0.7	1
69	10.1063/1.5046502.1., 2018,,.		0