
Qiang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5381172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367, 1444-1448.	12.6	4,319
2	A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science, 2020, 369, 650-655.	12.6	1,292
3	Structure of the voltage-gated calcium channel Cav1.1 at 3.6 à resolution. Nature, 2016, 537, 191-196.	27.8	398
4	AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Research, 2021, 31, 126-140.	12.0	356
5	Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science, 2017, 355, .	12.6	351
6	Structure of the human voltage-gated sodium channel Na _v 1.4 in complex with β1. Science, 2018, 362, .	12.6	333
7	Structural and biochemical basis for induced self-propagation of NLRC4. Science, 2015, 350, 399-404.	12.6	282
8	Structure of the Nav1.4-β1 Complex from Electric Eel. Cell, 2017, 170, 470-482.e11.	28.9	272
9	Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection. Cell, 2016, 165, 1467-1478.	28.9	266
10	Recognition of the amyloid precursor protein by human \hat{I}^3 -secretase. Science, 2019, 363, .	12.6	229
11	Structure of the human LAT1–4F2hc heteromeric amino acid transporter complex. Nature, 2019, 568, 127-130.	27.8	217
12	Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science, 2018, 362, .	12.6	200
13	Structural basis of Notch recognition by human Î ³ -secretase. Nature, 2019, 565, 192-197.	27.8	194
14	Structural basis for the recognition of Sonic Hedgehog by human Patched1. Science, 2018, 361, .	12.6	168
15	SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity, 2021, 54, 1304-1319.e9.	14.3	115
16	Modulation of cardiac ryanodine receptor 2 by calmodulin. Nature, 2019, 572, 347-351.	27.8	110
17	The cryo-EM structure of the SF3b spliceosome complex bound to a splicing modulator reveals a pre-mRNA substrate competitive mechanism of action. Genes and Development, 2018, 32, 309-320.	5.9	89
18	Structural basis for the different states of the spike protein of SARS-CoV-2 in complex with ACE2. Cell Research, 2021, 31, 717-719.	12.0	77

QIANG ZHOU

#	Article	IF	CITATIONS
19	Engineered trimeric ACE2 binds viral spike protein and locks it in "Three-up―conformation to potently inhibit SARS-CoV-2 infection. Cell Research, 2021, 31, 98-100.	12.0	76
20	Structure of the human plasma membrane Ca2+-ATPase 1 in complex with its obligatory subunit neuroplastin. Nature Communications, 2018, 9, 3623.	12.8	71
21	Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nature Microbiology, 2022, 7, 1063-1074.	13.3	63
22	Structural basis for bivalent binding and inhibition of SARS-CoV-2 infection by human potent neutralizing antibodies. Cell Research, 2021, 31, 517-525.	12.0	54
23	ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduction and Targeted Therapy, 2021, 6, 315.	17.1	53
24	Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex. Cell Research, 2020, 30, 532-540.	12.0	51
25	Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex by cryo-electron microscopy single particle analysis. Cell Research, 2020, 30, 520-531.	12.0	51
26	Structural mechanism of phospholipids translocation by MlaFEDB complex. Cell Research, 2020, 30, 1127-1135.	12.0	49
27	The structure of erastin-bound xCT–4F2hc complexÂreveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Research, 2022, 32, 687-690.	12.0	48
28	Structural and Functional Characterization of Ryanodine Receptor-Natrin Toxin Interaction. Biophysical Journal, 2008, 95, 4289-4299.	0.5	46
29	A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols. Science, 2021, 371, .	12.6	44
30	Structure of the cytoplasmic ring of the <i>Xenopus laevis</i> nuclear pore complex. Science, 2022, 376, .	12.6	44
31	Cryo-EM structure of SNAP-SNARE assembly in 20S particle. Cell Research, 2015, 25, 551-560.	12.0	42
32	Mechanism of substrate transport and inhibition of the human LAT1-4F2hc amino acid transporter. Cell Discovery, 2021, 7, 16.	6.7	40
33	Cryo-EM structures of the full-length human KCC2 and KCC3 cation-chloride cotransporters. Cell Research, 2021, 31, 482-484.	12.0	31
34	Cryo-EM structure of the human heteromeric amino acid transporter b ^{0,+} AT-rBAT. Science Advances, 2020, 6, eaay6379.	10.3	27
35	Mechanistic insights into the SNARE complex disassembly. Science Advances, 2019, 5, eaau8164.	10.3	25
36	Cryo-EM structures of Acinetobacter baumannii glycerophospholipid transporter. Cell Discovery, 2020, 6, 86.	6.7	23

QIANG ZHOU

#	Article	IF	CITATIONS
37	Novel sarbecovirus bispecific neutralizing antibodies with exceptional breadth and potency against currently circulating SARS-CoV-2 variants and sarbecoviruses. Cell Discovery, 2022, 8, 36.	6.7	22
38	Cryo-EM structure of human Wntless in complex with Wnt3a. Nature Communications, 2021, 12, 4541.	12.8	20
39	Structural biology in the fight against COVID-19. Nature Structural and Molecular Biology, 2021, 28, 2-7.	8.2	20
40	Cryo-EM structure of the nuclear ring from Xenopus laevis nuclear pore complex. Cell Research, 2022, 32, 349-358.	12.0	19
41	Broad ultra-potent neutralization of SARS-CoV-2 variants by monoclonal antibodies specific to the tip of RBD. Cell Discovery, 2022, 8, 16.	6.7	18
42	Cryo-EM structure of the inner ring from the Xenopus laevis nuclear pore complex. Cell Research, 2022, 32, 451-460.	12.0	15
43	Broadly neutralizing antibodies against Omicron-included SARS-CoV-2 variants induced by vaccination. Signal Transduction and Targeted Therapy, 2022, 7, 139.	17.1	14
44	Structural insight into the substrate recognition and transport mechanism of the human LAT2–4F2hc complex. Cell Discovery, 2020, 6, 82.	6.7	13
45	ACE2, B0AT1, and SARS-CoV-2 spike protein: Structural and functional implications. Current Opinion in Structural Biology, 2022, 74, 102388.	5.7	10
46	Cryo-EM structures of recombinant human sodium-potassium pump determined in three different states. Nature Communications, 2022, 13, .	12.8	10
47	Particle segmentation algorithm for flexible single particle reconstruction. Biophysics Reports, 2017, 3, 43-55.	0.8	9
48	Structural Characterization of the Complex of SecB and Metallothionein-Labeled proOmpA by Cryo-Electron Microscopy. PLoS ONE, 2012, 7, e47015.	2.5	6
49	Cryo-EM structure of L-fucokinase/GDP-fucose pyrophosphorylase (FKP) in Bacteroides fragilis. Protein and Cell, 2019, 10, 365-369.	11.0	6