Hadar Ben-Yoav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5380757/publications.pdf

Version: 2024-02-01

361413 434195 1,097 61 20 31 citations h-index g-index papers 62 62 62 1401 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Electrodes for Cell Sensors Interfacing. , 2022, , 569-600.		O
2	Integration of Sensor Cells into Hardware Platforms. , 2022, , 141-162.		1
3	Diffusion- and Chemometric-Based Separation of Complex Electrochemical Signals That Originated from Multiple Redox-Active Molecules. Polymers, 2022, 14, 717.	4.5	3
4	Microfluidic channel sensory system for electro-addressing cell location, determining confluency, and quantifying a general number of cells. Scientific Reports, 2022, 12, 3248.	3.3	9
5	Use of some cost-effective technologies for a routine clinical pathology laboratory. Lab on A Chip, 2021, 21, 4330-4351.	6.0	8
6	Rosarium Philosophorum on Electrochemistry. Israel Journal of Chemistry, 2021, 61, 3-5.	2.3	0
7	Partially Functional Electrode Modifications for Rapid Detection of Dopamine in Urine. Advanced Functional Materials, 2021, 31, 2004146.	14.9	22
8	Electrode Coatings: Partially Functional Electrode Modifications for Rapid Detection of Dopamine in Urine (Adv. Funct. Mater. 17/2021). Advanced Functional Materials, 2021, 31, 2170117.	14.9	1
9	Electrochemical Determination of Hydroxyurea in a Complex Biological Matrix Using MoS2-Modified Electrodes and Chemometrics. Biomedicines, 2021, 9, 6.	3.2	8
10	A reduced-graphene oxide-modified microelectrode for a repeatable detection of antipsychotic clozapine using microliters-volumes of whole blood. Talanta, 2020, 209, 120560.	5 . 5	16
11	An integrated electrochemical microsystem for real-time treatment monitoring of clozapine in microliter volume samples from schizophrenia patients. Electrochemistry Communications, 2020, 120, 106850.	4.7	6
12	Probing antibody surface density and analyte antigen incubation time as dominant parameters influencing the antibody-antigen recognition events of a non-faradaic and diffusion-restricted electrochemical immunosensor. Analytical and Bioanalytical Chemistry, 2020, 412, 1709-1717.	3.7	23
13	Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements. HardwareX, 2020, 7, e00108.	2.2	42
14	A platinum black-modified microelectrode for in situ olanzapine detection in microliter volumes of undiluted serum. Journal of Neural Transmission, 2020, 127, 291-299.	2.8	4
15	Electrodes for Cell Sensors Interfacing. , 2020, , 1-33.		О
16	Integration of Sensor Cells into Hardware Platforms. , 2019, , 1-23.		0
17	A Chitosan–Carbon Nanotubeâ€Modified Microelectrode for In Situ Detection of Blood Levels of the Antipsychotic Clozapine in a Fingerâ€Pricked Sample Volume. Advanced Healthcare Materials, 2019, 8, e1900462.	7.6	14
18	The effect of loading carbon nanotubes onto chitosan films on electrochemical dopamine sensing in the presence of biological interference. Talanta, 2018, 181, 57-64.	5 . 5	34

#	Article	IF	Citations
19	Intelligent Multi-Electrode Arrays as the Next Generation of Electrochemical Biosensors for Real-Time Analysis of Neurotransmitters. , $2018, \ldots$		4
20	Blood Draw Barriers for Treatment with Clozapine and Development of a Point-of-Care Monitoring Device. Clinical Schizophrenia and Related Psychoses, 2018, 12, 23-30.	1.4	30
21	The interplay of electrode- and bio-materials in a redox-cycling-based clozapine sensor. Electrochemistry Communications, 2017, 79, 33-36.	4.7	9
22	Molecular processes in an electrochemical clozapine sensor. Biointerphases, 2017, 12, 02B401.	1.6	7
23	Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events. Methods in Molecular Biology, 2017, 1572, 71-88.	0.9	3
24	The Binding Effect of Proteins on Medications and Its Impact on Electrochemical Sensing: Antipsychotic Clozapine as a Case Study. Pharmaceuticals, 2017, 10, 69.	3.8	6
25	Chitosan bio-functionalization of carbon nanotube arrayed electrode. Advanced Materials Letters, 2017, 8, 1166-1170.	0.6	0
26	Hydrodynamic focusing for microfluidic impedance cytometry: a system integration study. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	14
27	Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels. Advanced Healthcare Materials, 2016, 5, 2595-2616.	7.6	16
28	Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. Npj Biofilms and Microbiomes, 2015, 1, 15016.	6.4	48
29	Programmable "Semismart―Sensor: Relevance to Monitoring Antipsychotics. Advanced Functional Materials, 2015, 25, 2156-2165.	14.9	23
30	Multidimensional Mapping Method Using an Arrayed Sensing System for Cross-Reactivity Screening. PLoS ONE, 2015, 10, e0116310.	2.5	10
31	An Electrochemical Micro-System for Clozapine Antipsychotic Treatment Monitoring. Electrochimica Acta, 2015, 163, 260-270.	5.2	17
32	Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface. Polymers, 2015, 7, 1-46.	4.5	87
33	Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in solid Nafion electrolyte. Journal of Power Sources, 2015, 293, 649-656.	7.8	32
34	A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis. Biosensors and Bioelectronics, 2015, 64, 579-585.	10.1	42
35	Electrochemical Study of the Catechol-Modified Chitosan System for Clozapine Treatment Monitoring. Langmuir, 2014, 30, 14686-14693.	3.5	31
36	A Microfluidic-based Electrochemical Biochip for Label-free DNA Hybridization Analysis. Journal of Visualized Experiments, 2014, , 51797.	0.3	2

#	Article	IF	Citations
37	Redox cycling-based amplifying electrochemical sensor for in situ clozapine antipsychotic treatment monitoring. Electrochimica Acta, 2014, 130, 497-503.	5.2	36
38	Electronic modulation of biochemical signal generation. Nature Nanotechnology, 2014, 9, 605-610.	31.5	52
39	The effect of Vitamin C for point-of-care blood analysis applications using an electrochemical biosensor., 2013,,.		0
40	Functional modeling of electrochemical whole-cell biosensors. Sensors and Actuators B: Chemical, 2013, 181, 479-485.	7.8	9
41	Scale-down effects: Towards miniaturization of an electrochemical sensor using biomolecules. , 2013, , .		2
42	Catechol-modified Chitosan System as a Bio-amplifier for Schizophrenia Treatment Analysis. Materials Research Society Symposia Proceedings, 2013, 1572, 1.	0.1	2
43	Integrated Polypyrrole Flexible Conductors for Biochips and MEMS Applications. Journal of Atomic, Molecular, and Optical Physics, 2012, 2012, 1-5.	0.5	1
44	A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization analysis. Biosensors and Bioelectronics, 2012, 38, 114-120.	10.1	47
45	Modified working electrodes for electrochemical whole-cell microchips. Electrochimica Acta, 2012, 82, 109-114.	5.2	10
46	Whole-cell biochips for bio-sensing: integration of live cells and inanimate surfaces. Critical Reviews in Biotechnology, 2011, 31, 337-353.	9.0	45
47	An electrochemical impedance model for integrated bacterial biofilms. Electrochimica Acta, 2011, 56, 7780-7786.	5.2	51
48	Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields. Electrochimica Acta, 2011, 56, 9666-9672.	5.2	6
49	Microbial genotoxicity bioreporters based on sulA activation. Analytical and Bioanalytical Chemistry, 2011, 400, 3013-3024.	3.7	30
50	Bacterial biofilm-based water toxicity sensor. Sensors and Actuators B: Chemical, 2011, 158, 366-371.	7.8	10
51	Evaluation of chrono-amperometric signal detection for the analysis of genotoxicity by a whole cell biosensor. Analytica Chimica Acta, 2010, 659, 122-128.	5.4	16
52	Bacterial genotoxicity bioreporters. Microbial Biotechnology, 2010, 3, 412-427.	4.2	51
53	Electronically Directed Integration of Whole-Cell Biosensors on Bio-Chips. ECS Transactions, 2010, 33, 49-58.	0.5	0
54	VLSI universal signal conditioning circuit for electrochemical and bioluminescent sensors. , 2010, , .		3

#	Article	IF	CITATIONS
55	Optical and Electrical Interfacing Technologies for Living Cell Bio-Chips. Current Pharmaceutical Biotechnology, 2010, 11, 376-383.	1.6	11
56	On-Chip Detection of Cellular Activity., 2009, 117, 179-191.		1
57	Optical modeling of bioluminescence in whole cell biosensors. Biosensors and Bioelectronics, 2009, 24, 1969-1973.	10.1	24
58	A whole cell electrochemical biosensor for water genotoxicity bio-detection. Electrochimica Acta, 2009, 54, 6113-6118.	5.2	84
59	A Novel Microfluidic Whole Cell Biosensor Based on Electrochemical Detection for Water Toxicity Analysis. ECS Transactions, 2009, 16, 187-197.	0.5	2
60	Towards toxicity detection using a lab-on-chip based on the integration of MOEMS and whole-cell sensors. Biosensors and Bioelectronics, 2008, 23, 1631-1636.	10.1	29
61	Enzymatically attenuated in situ release of silver ions to combat bacterial biofilms: a feasibility study. Journal of Drug Delivery Science and Technology, 2008, 18, 25-29.	3.0	3