Cristel Archambaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5380737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The unforeseen intracellular lifestyle of <i>Enterococcus faecalis</i> in hepatocytes. Gut Microbes, 2022, 14, 2058851.	9.8	6
2	Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathogens, 2021, 17, e1009880.	4.7	8
3	An Immunomodulatory Transcriptional Signature Associated With Persistent Listeria Infection in Hepatocytes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 761945.	3.9	2
4	Virulence gene repression promotes <i>Listeria monocytogenes</i> systemic infection. Gut Microbes, 2020, 11, 868-881.	9.8	3
5	Intestinal translocation of enterococci requires a threshold level of enterococcal overgrowth in the lumen. Scientific Reports, 2019, 9, 8926.	3.3	43
6	Exploration of the role of the virulence factor ElrA during Enterococcus faecalis cell infection. Scientific Reports, 2018, 8, 1749.	3.3	13
7	A PNPase Dependent CRISPR System in Listeria. PLoS Genetics, 2014, 10, e1004065.	3.5	76
8	Comparison of Widely Used Listeria monocytogenes Strains EGD, 10403S, and EGD-e Highlights Genomic Differences Underlying Variations in Pathogenicity. MBio, 2014, 5, e00969-14.	4.1	201
9	Quantitative Proteome Analyses Identify PrfA-Responsive Proteins and Phosphoproteins in <i>Listeria monocytogenes</i> . Journal of Proteome Research, 2014, 13, 6046-6057.	3.7	28
10	The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nature Reviews Microbiology, 2013, 11, 75-82.	28.6	152
11	The Intestinal Microbiota Interferes with the microRNA Response upon Oral <i>Listeria</i> Infection. MBio, 2013, 4, e00707-13.	4.1	72
12	Reply to Million et al.: Lactobacilli and listeriosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2-E2.	7.1	6
13	Impact of lactobacilli on orally acquired listeriosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16684-16689.	7.1	111
14	Microbes for Health 2 Symposium: meeting report. Research in Microbiology, 2012, 163, 151-155.	2.1	0
15	Comparative transcriptomics of pathogenic and nonâ€pathogenic <i>Listeria</i> species. Molecular Systems Biology, 2012, 8, 583.	7.2	269
16	Cell biology and immunology of <i>Listeria monocytogenes</i> infections: novel insights. Immunological Reviews, 2011, 240, 160-184.	6.0	142
17	LipA, a Tyrosine and Lipid Phosphatase Involved in the Virulence of Listeria monocytogenes. Infection and Immunity, 2011, 79, 2489-2498.	2.2	31
18	Contrasting roles of macrophages and dendritic cells in controlling initial pulmonary <i>Brucella</i> infection. European Journal of Immunology, 2010, 40, 3458-3471.	2.9	81

#	Article	IF	CITATIONS
19	STAT6 Deletion Converts the Th2 Inflammatory Pathology Afflicting <i>Lat<i>Y136F</i> </i> Mice into a Lymphoproliferative Disorder Involving Th1 and CD8 Effector T Cells. Journal of Immunology, 2009, 182, 2680-2689.	0.8	19
20	Loss of the LAT Adaptor Converts Antigen-Responsive T Cells into Pathogenic Effectors that Function Independently of the T Cell Receptor. Immunity, 2009, 31, 197-208.	14.3	105
21	The bacterial pathogen Listeria monocytogenes: an emerging model in prokaryotic transcriptomics. Journal of Biology, 2009, 8, 107.	2.7	17
22	Control ofListeriaSuperoxide Dismutase by Phosphorylation. Journal of Biological Chemistry, 2006, 281, 31812-31822.	3.4	121
23	Control of Listeria Superoxide Dismutase by Phosphorylation. Journal of Biological Chemistry, 2006, 281, 31812-31822.	3.4	30
24	Listeria monocytogenesferritin protects against multiple stresses and is required for virulence. FEMS Microbiology Letters, 2005, 250, 253-261.	1.8	74
25	ARHGAP10 is necessary for α-catenin recruitment at adherens junctions and for Listeria invasion. Nature Cell Biology, 2005, 7, 954-960.	10.3	106
26	Translation elongation factor EFâ€Tu is a target for Stp, a serineâ€threonine phosphatase involved in virulence of <i>Listeria monocytogenes</i> . Molecular Microbiology, 2005, 56, 383-396.	2.5	98