Bo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5379667/publications.pdf Version: 2024-02-01

Roluu

#	Article	IF	CITATIONS
1	The PCS1 basic helixâ€loopâ€helix protein regulates <i>Fl3</i> to impact seed growth and grain yield in cereals. Plant Biotechnology Journal, 2022, 20, 1311-1326.	8.3	23
2	Spindle Assembly and Mitosis in Plants. Annual Review of Plant Biology, 2022, 73, 227-254.	18.7	16
3	Disarming PI(4,5)P2 in the plasma membrane. Nature Plants, 2021, 7, 552-553.	9.3	1
4	Establishment of a mitotic model system by transient expression of the Dâ€ŧype cyclin in differentiated leaf cells of tobacco (<i>Nicotiana benthamiana</i>). New Phytologist, 2020, 226, 1213-1220.	7.3	32
5	Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. New Phytologist, 2019, 222, 1705-1718.	7.3	48
6	TPX2-LIKE PROTEIN3 Is the Primary Activator of α-Aurora Kinases and Is Essential for Embryogenesis. Plant Physiology, 2019, 180, 1389-1405.	4.8	16
7	The Î ³ -tubulin complex protein GCP6 is crucial for spindle morphogenesis but not essential for microtubule reorganization in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 27115-27123.	7.1	12
8	The preprophase band-associated kinesin-14 OsKCH2 is a processive minus-end-directed microtubule motor. Nature Communications, 2018, 9, 1067.	12.8	26
9	Role of the BUB3 protein in phragmoplast microtubule reorganization during cytokinesis. Nature Plants, 2018, 4, 485-494.	9.3	27
10	Arabidopsis <scp>MAP</scp> 65â€4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site. New Phytologist, 2017, 215, 187-201.	7.3	65
11	CAPPI: A Cytoskeleton-Based Localization Assay Reports Protein-Protein Interaction in Living Cells by Fluorescence Microscopy. Molecular Plant, 2017, 10, 1473-1476.	8.3	8
12	The Mitotic Function of Augmin Is Dependent on Its Microtubule-Associated Protein Subunit EDE1 in Arabidopsis thaliana. Current Biology, 2017, 27, 3891-3897.e4.	3.9	36
13	Kinesin-4 Functions in Vesicular Transport on Cortical Microtubules and Regulates Cell Wall Mechanics during Cell Elongation in Plants. Molecular Plant, 2015, 8, 1011-1023.	8.3	83
14	Kinesin motors in plants: from subcellular dynamics to motility regulation. Current Opinion in Plant Biology, 2015, 28, 120-126.	7.1	17
15	Microtubule plus endâ€ŧracking proteins play critical roles in directional growth of hyphae by regulating the dynamics of cytoplasmic microtubules in <scp> <i>A</i> </scp> <i> spergillus nidulans</i> . Molecular Microbiology, 2014, 94, 506-521.	2.5	18
16	Augmin Triggers Microtubule-Dependent Microtubule Nucleation in Interphase Plant Cells. Current Biology, 2014, 24, 2708-2713.	3.9	78
17	The rise and fall of the phragmoplast microtubule array. Current Opinion in Plant Biology, 2013, 16, 757-763.	7.1	59
18	Microtubule Disassembly: When a Sleeper Is Activated. Current Biology, 2013, 23, R932-R933.	3.9	1

Bo Liu

#	Article	IF	CITATIONS
19	<i>Arabidopsis</i> Microtubule-Associated Protein MAP65-3 Cross-Links Antiparallel Microtubules toward Their Plus Ends in the Phragmoplast via Its Distinct C-Terminal Microtubule Binding Domain. Plant Cell, 2012, 24, 2071-2085.	6.6	60
20	Characterization of the <i>Arabidopsis</i> Augmin Complex Uncovers Its Critical Function in the Assembly of the Acentrosomal Spindle and Phragmoplast Microtubule Arrays. Plant Cell, 2012, 24, 1494-1509.	6.6	88
21	Microtubule Organization in the Phragmoplast. Advances in Plant Biology, 2011, , 207-225.	0.8	9
22	Microtubule Reorganization during Mitosis and Cytokinesis: Lessons Learned from Developing Microgametophytes in Arabidopsis Thaliana. Frontiers in Plant Science, 2011, 2, 27.	3.6	13
23	Interaction of Antiparallel Microtubules in the Phragmoplast Is Mediated by the Microtubule-Associated Protein MAP65-3 in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 2909-2923.	6.6	98
24	Augmin Plays a Critical Role in Organizing the Spindle and Phragmoplast Microtubule Arrays in <i>Arabidopsis</i> . Plant Cell, 2011, 23, 2606-2618.	6.6	82
25	The γ -Tubulin Complex Protein GCP4 Is Required for Organizing Functional Microtubule Arrays in <i>Arabidopsis thaliana</i> Â. Plant Cell, 2010, 22, 191-204.	6.6	78
26	Timely Septation Requires SNAD-dependent Spindle Pole Body Localization of the Septation Initiation Network Components in the Filamentous Fungus <i>Aspergillus nidulans</i> . Molecular Biology of the Cell, 2009, 20, 2874-2884.	2.1	44
27	Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. Annals of Botany, 2009, 103, 387-402.	2.9	61
28	The WD40 Repeat Protein NEDD1 Functions in Microtubule Organization during Cell Division in <i>Arabidopsis thaliana</i> Â. Plant Cell, 2009, 21, 1129-1140.	6.6	96
29	Two <i>Arabidopsis</i> Phragmoplast-Associated Kinesins Play a Critical Role in Cytokinesis during Male Gametogenesis. Plant Cell, 2007, 19, 2595-2605.	6.6	112
30	Cytoskeletal Motor Proteins in Plant Cell Division. Plant Cell Monographs, 2007, , 169-193.	0.4	3
31	Isolation of Mutations That Bypass the Requirement of the Septation Initiation Network for Septum Formation and Conidiation in Aspergillus nidulans. Genetics, 2006, 173, 685-696.	2.9	49
32	An Internal Motor Kinesin Is Associated with the Golgi Apparatus and Plays a Role in Trichome Morphogenesis in Arabidopsis. Molecular Biology of the Cell, 2005, 16, 811-823.	2.1	147
33	Two Microtubule-Associated Proteins of the Arabidopsis MAP65 Family Function Differently on Microtubules. Plant Physiology, 2005, 138, 654-662.	4.8	123
34	A Plant-Specific Kinesin Binds to Actin Microfilaments and Interacts with Cortical Microtubules in Cotton Fibers. Plant Physiology, 2004, 136, 3945-3955.	4.8	128
35	Cytoskeletal Motors in Arabidopsis. Sixty-One Kinesins and Seventeen Myosins. Plant Physiology, 2004, 136, 3877-3883.	4.8	138
36	Localization of two homologous Arabidopsis kinesin-related proteins in the phragmoplast. Planta, 2004, 220, 156-164.	3.2	43

Bo Liu

#	Article	IF	CITATIONS
37	Identification of kinesin-related proteins in the phragmoplast. Cell Biology International, 2003, 27, 227-228.	3.0	2
38	The requirement of the LC8 dynein light chain for nuclear migration and septum positioning is temperature dependent in Aspergillus nidulans. Molecular Microbiology, 2003, 47, 291-301.	2.5	42
39	The Cotton Kinesin-Like Calmodulin-Binding Protein Associates with Cortical Microtubules in Cotton Fibers. Plant Physiology, 2003, 132, 154-160.	4.8	72
40	Kinesin-Related Proteins in Plant Cytokinesis. Journal of Plant Growth Regulation, 2001, 20, 141-150.	5.1	41
41	The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Current Biology, 2001, 11, 719-724.	3.9	175
42	A Katanin-like Protein Regulates Normal Cell Wall gBiosynthesis and Cell Elongation. Plant Cell, 2001, 13, 807-827.	6.6	330
43	A Novel Plant Kinesin-Related Protein Specifically Associates with the Phragmoplast Organelles. Plant Cell, 2001, 13, 2427-2439.	6.6	105
44	Identification of a phragmoplast-associated kinesin-related protein in higher plants. Current Biology, 2000, 10, 797-800.	3.9	105
45	A spindle pole body-associated protein, SNAD, affects septation and conidiation in Aspergillus nidulans. Molecular Genetics and Genomics, 2000, 263, 375-387.	2.4	41
46	The "8-kD―Cytoplasmic Dynein Light Chain Is Required for Nuclear Migration and for Dynein Heavy Chain Localization in Aspergillus nidulans. Journal of Cell Biology, 1998, 143, 1239-1247.	5.2	89
47	A Kinesin-Like Protein, KatAp, in the Cells of Arabidopsis and Other Plants. Plant Cell, 1996, 8, 119.	6.6	26
48	Experimental manipulation of ?-tubulin distribution inarabidopsis using anti-microtubule drugs. Cytoskeleton, 1995, 31, 113-129.	4.4	51
49	?-Tubulin is associated with a cortical-microtubule-organizing zone in the developing guard cells of Allium cepa L Planta, 1993, 191, 357-61.	3.2	46
50	Organization of cortical microfilaments in dividing root cells. Cytoskeleton, 1992, 23, 252-264.	4.4	101
51	Kinetochore fiber formation in dividing generative cells of Tradescantia KInetochore reorientatlon associated with the transition between lateral microtubuie interactions and end-on kinetochore fibers. Journal of Cell Science, 1991, 98, 475-482.	2.0	31