
Mingsheng Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/537906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fischerâ^'Tropsch synthesis: activity and selectivity for Group I alkali promoted iron-based catalysts. Applied Catalysis A: General, 2002, 236, 77-89.	4.3	149
2	Fischer–Tropsch synthesis: effect of water on Co/Al2O3 catalysts and XAFS characterization of reoxidation phenomena. Applied Catalysis A: General, 2004, 270, 65-76.	4.3	138
3	Fischer-Tropsch Synthesis. Catalysis Today, 2009, 140, 127-134.	4.4	74
4	High Rate and Stable Li-Ion Insertion in Oxygen-Deficient LiV ₃ O ₈ Nanosheets as a Cathode Material for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 2875-2882.	8.0	64
5	Fischer–Tropsch synthesis: induction and steady-state activity of high-alpha potassium promoted iron catalysts. Applied Catalysis A: General, 2003, 239, 111-120.	4.3	59
6	Fischer–Tropsch Synthesis: Effect of Water Over Iron-Based Catalysts. Catalysis Letters, 2010, 140, 98-105.	2.6	44
7	Fischerâ^'Tropsch Synthesis:  Assessment of the Ripening of Cobalt Clusters and Mixing between Co and Ru Promoter via Oxidationâ^'Reduction-Cycles over Lower Co-Loaded Ruâ^'Co/Al ₂ O ₃ Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 672-680.	3.7	41
8	Vanadium-containing dendritic mesoporous silica nanoparticles: Multifunctional catalysts for the oxidative and non-oxidative dehydrogenation of propane to propylene. Microporous and Mesoporous Materials, 2019, 282, 133-145.	4.4	37
9	K-modified Sn-containing dendritic mesoporous silica nanoparticles with tunable size and SnOx-silica interaction for the dehydrogenation of propane to propylene. Chemical Engineering Journal, 2020, 380, 122423.	12.7	36
10	Synthesis of phosphate-bridged g-C3N4/LaFeO3 nanosheets Z-scheme nanocomposites as efficient visible photocatalysts for CO2 reduction and malachite green degradation. Applied Catalysis A: General, 2022, 629, 118418.	4.3	35
11	Green synthesis of SrO bridged LaFeO3/g-C3N4 nanocomposites for CO2 conversion and bisphenol A degradation with new insights into mechanism. Environmental Research, 2022, 207, 112650.	7.5	34
12	Fischer–Tropsch synthesis: activation of low-alpha potassium promoted iron catalysts. Fuel Processing Technology, 2003, 83, 49-65.	7.2	32
13	Fischer–Tropsch synthesis: Attempt to tune FTS and WGS by alkali promoting of iron catalysts. Applied Catalysis A: General, 2010, 389, 131-139.	4.3	32
14	Enhanced visible-light photoactivities of porous LaFeO ₃ by synchronously doping Ni ²⁺ and coupling TS-1 for CO ₂ reduction and 2,4,6-trinitrophenol degradation. Catalysis Science and Technology, 2021, 11, 6793-6803.	4.1	30
15	Fischer–Tropsch Synthesis: ZIF-8@ZIF-67-Derived Cobalt Nanoparticle-Embedded Nanocage Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 12352-12359.	3.7	28
16	Effect of Palladium on Iron Fischer?Tropsch Synthesis Catalysts. Catalysis Letters, 2004, 98, 17-22.	2.6	27
17	Insights into the endurance promotion of PtSn/CNT catalysts by thermal annealing for ethanol electro-oxidation. Electrochimica Acta, 2016, 213, 578-586.	5.2	26
18	Experimental and simulation study of CO2 and H2S solubility in propylene carbonate, imidazolium-based ionic liquids and their mixtures. Journal of Chemical Thermodynamics, 2020, 142, 106017.	2.0	25

MINGSHENG LUO

#	Article	IF	CITATIONS
19	Fischer-Tropsch Synthesis: Influence of Support on the Impact of Co-Fed Water for Cobalt-Based Catalysts. Studies in Surface Science and Catalysis, 2007, , 217-253.	1.5	24
20	Relationship between Acidity, Defective Sites, and Diffusion Properties of Nanosheet ZSM-5 and Its Catalytic Performance in the Methanol to Propylene Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 12506-12515.	3.7	22
21	Selection of highly active and stable Co supported SiC catalyst for Fischer-Tropsch synthesis: Effect of the preparation method. Fuel, 2018, 229, 144-150.	6.4	20
22	Co-Al nanosheets derived from LDHs and their catalytic performance for syngas conversion. Journal of Colloid and Interface Science, 2019, 538, 440-448.	9.4	19
23	A Newly Designed Core-Shell-Like Zeolite Capsule Catalyst for Synthesis of Light Olefins from Syngas via Fischerâ€ ^a Tropsch Synthesis Reaction. Catalysis Letters, 2019, 149, 441-448.	2.6	15
24	Fischer–Tropsch Synthesis: Effect of Start-Up Solvent in a Slurry Reactor. Catalysis Letters, 2013, 143, 395-400.	2.6	14
25	Fischer-Tropsch synthesis: Effect of nitric acid pretreatment on graphene-supported cobalt catalyst. Applied Catalysis A: General, 2020, 599, 117608.	4.3	14
26	Novel Feâ€modified CeO ₂ Nanorod Catalyst for the Dimethyl Carbonate Formation from CO ₂ and Methanol. ChemCatChem, 2022, 14, .	3.7	14
27	Insights into the stable and fast lithium storage performance of oxygen-deficient LiV3O8 nanosheets. Nano Research, 2021, 14, 814-822.	10.4	13
28	The effect of different solvents on graphene supported cobalt Fischer-Tropsch catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 279-291.	1.7	12
29	Low-Temperature Selective Catalytic Reduction of NO with NH3 Over Mn–Ti Oxide Catalyst: Effect of the Synthesis Conditions. Catalysis Letters, 2021, 151, 966-979.	2.6	11
30	<scp><i>Eriobotrya japonica</i></scp> assisted green synthesis of <scp>gâ€C₃N₄</scp> nanocomposites and its exceptional photoactivities for doxycycline and rhodamine B degradation with mechanism insight. Journal of the Chinese Chemical Society, 2021, 68, 2093-2102.	1.4	11
31	In situ XRD and Raman Investigation of the Activation Process over K–Cu–Fe/SiO2 Catalyst for Fischer–Tropsch Synthesis Reaction. Catalysis Letters, 2020, 150, 2437-2445.	2.6	10
32	Downlink Performance and Capacity of Distributed Antenna System in Multi-User Scenario. , 2009, , .		9
33	Characterization of the Lower Silurian Longmaxi marine shale in Changning area in the south Sichuan Basin, China. Geological Journal, 2018, 53, 1656-1664.	1.3	9
34	Fischer–Tropsch Synthesis: Branched Paraffin Distribution for Potassium Promoted Iron Catalysts. Catalysis Letters, 2014, 144, 1031-1041.	2.6	8
35	Effects of Al, Si, Ti, Zr Promoters on Catalytic Performance of Iron-Based Fischer–Tropsch Synthesis Catalysts. Catalysis Letters, 2020, 150, 1993-2002.	2.6	8
36	The effect of SiO2 particle size on iron based F–T synthesis catalysts. Chinese Journal of Chemical Engineering, 2016, 24, 937-943.	3.5	7

MINGSHENG LUO

#	Article	IF	CITATIONS
37	Effect of Potassium on the Structure, Physic-Chemical and Catalytic Properties of Vanadium-Incorporated Mesoporous Catalysts for the Oxidative Dehydrogenation of Propane. Catalysis Letters, 2019, 149, 1345-1358.	2.6	7
38	Ultra-Thin Mesoporous LiV ₃ O ₈ Nanosheet with Exceptionally Large Specific Area for Fast and Reversible Li Storage in Lithium-Ion Battery Cathode. Journal of the Electrochemical Society, 2021, 168, 050515.	2.9	7
39	Molecular Simulation and Experimental Study on Low-Viscosity Ionic Liquids for High-Efficient Capturing of CO ₂ . Energy & Fuels, 2022, 36, 1604-1613.	5.1	7
40	MOF-Derived Porous Carbon-Supported Bimetallic Fischer–Tropsch Synthesis Catalysts. Industrial & Engineering Chemistry Research, 2022, 61, 3941-3951.	3.7	7
41	Effect of Iron Precursor on Catalytic Performance of Precipitated Iron Catalyst for Fischer–Tropsch Synthesis Reaction. Catalysis Letters, 2020, 150, 2640-2647.	2.6	6
42	Deactivation and Regeneration of Alkali Metal Promoted Iron Fischer-Tropsch Synthesis Catalysts. Studies in Surface Science and Catalysis, 2001, , 133-140.	1.5	5
43	Cobalt Nanoparticle-Decorated LDH/ZIF-Derived Porous Nanoplatelets for Fischer–Tropsch Synthesis. ACS Applied Nano Materials, 2021, 4, 3734-3741.	5.0	5
44	Fischer–Tropsch Synthesis: Study of Different Carbon Materials as Cobalt Catalyst Support. Reactions, 2021, 2, 43-61.	2.1	5
45	β-Mo2C/γ-Al2O3 catalyst for one step CO hydrogenation to produce alcohols. Catalysis Today, 2022, 402, 328-334.	4.4	5
46	A Fast Carrier Synchronization Algorithm for Burst-Mode MPSK. , 2007, , .		4
47	Effect of Na, Cu and Ru on metal-organic framework-derived porous carbon supported iron catalyst for Fischer-Tropsch synthesis. Molecular Catalysis, 2021, 509, 111601.	2.0	4
48	Integral Function to Optimize Mass Exchange Network Synthesis Model. Journal of Chemical Engineering of Japan, 2020, 53, 254-266.	0.6	4
49	Carbon-Carbon bond formation during Fe catalyzed Fischer-Tropsch synthesis. Applied Catalysis A: General, 2020, 602, 117607.	4.3	3
50	Enhancing Ethanol Electrooxidation Stability over PtIr/GN Catalysts by In Situ Formation of IrO ₂ at Adjacent Sites. Journal of the Electrochemical Society, 2022, 169, 054509.	2.9	2
51	Hexadecane Hydrotreating as a Surrogate for Fischer-Tropsch Wax Upgrading to Aviation Fuel Using a Co/MoO ₃ /Silica-Alumina Catalyst. ACS Symposium Series, 2011, , 279-287.	0.5	1
52	Deuterium enrichments in hydrocarbons produced during ruthenium catalyzed Fischer-Tropsch synthesis. Catalysis Today, 2021, , .	4.4	1