Federico Scossa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5378903/publications.pdf

Version: 2024-02-01

42 papers

2,462 citations

218677
26
h-index

254184 43 g-index

47 all docs 47
docs citations

47 times ranked

3188 citing authors

#	Article	IF	CITATIONS
1	Heterosis and reciprocal effects for agronomic and fruit traits in Capsicum pepper hybrids. Scientia Horticulturae, 2022, 295, 110821.	3.6	6
2	Metabolic shifts during fruit development in pungent and non-pungent peppers. Food Chemistry, 2022, 375, 131850.	8.2	5
3	Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. Plant Cell, 2022, 34, 2056-2079.	6.6	25
4	Integrating multi-omics data for crop improvement. Journal of Plant Physiology, 2021, 257, 153352.	3.5	78
5	A phased genome based on single sperm sequencing reveals crossover pattern and complex relatedness in tea plants. Plant Journal, 2021, 105, 197-208.	5.7	15
6	On the Role of Transposable Elements in the Regulation of Gene Expression and Subgenomic Interactions in Crop Genomes. Critical Reviews in Plant Sciences, 2021, 40, 157-189.	5.7	28
7	Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nature Methods, 2021, 18, 733-746.	19.0	143
8	Domestication of Crop Metabolomes: Desired and Unintended Consequences. Trends in Plant Science, 2021, 26, 650-661.	8.8	60
9	When a Crop Goes Back to the Wild: Feralization. Trends in Plant Science, 2021, 26, 543-545.	8.8	10
10	The genomes of Taxus species unveil novel candidates in the biosynthesis of taxoids. Molecular Plant, 2021, 14, 1773-1775.	8.3	3
11	Ancestral sequence reconstruction - An underused approach to understand the evolution of gene function in plants?. Computational and Structural Biotechnology Journal, 2021, 19, 1579-1594.	4.1	10
12	Mobile Transposable Elements Shape Plant Genome Diversity. Trends in Plant Science, 2020, 25, 1062-1064.	8.8	9
13	Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications, 2020, 11, 3719.	12.8	108
14	Decoding altitude-activated regulatory mechanisms occurring during apple peel ripening. Horticulture Research, 2020, 7, 120.	6.3	30
15	The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Computational and Structural Biotechnology Journal, 2020, 18, 482-500.	4.1	36
16	Systems-Based Approaches to Unravel Networks and Individual Elements Involved in Apple Superficial Scald. Frontiers in Plant Science, 2020, 11 , 8 .	3.6	24
17	Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. Molecular Plant, 2020, 13, 1027-1046.	8.3	56
18	The Hot and the Colorful: Understanding the Metabolism, Genetics and Evolution of Consumer Preferred Metabolic Traits in Pepper and Related Species. Critical Reviews in Plant Sciences, 2019, 38, 339-381.	5.7	19

#	Article	IF	CITATIONS
19	Multiâ€tissue integration of transcriptomic and specialized metabolite profiling provides tools for assessing the common bean (<i>Phaseolus vulgaris</i>) metabolome. Plant Journal, 2019, 97, 1132-1153.	5.7	33
20	How fruit ripening is ENCODEd. Nature Plants, 2018, 4, 744-745.	9.3	1
21	The arginine decarboxylase gene <i><scp>ADC</scp>1</i> , associated to the putrescine pathway, plays an important role in potato coldâ \in acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. Plant Journal, 2018, 96, 1283-1298.	5.7	80
22	The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants. Planta Medica, 2018, 84, 855-873.	1.3	47
23	The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions. Plant Physiology, 2018, 177, 966-979.	4.8	81
24	Cucumber ovaries inhibited by dominant fruit express a dynamic developmental program, distinct from either senescenceâ€determined or fruitâ€setting ovaries. Plant Journal, 2018, 96, 651-669.	5.7	8
25	Canalization of Tomato Fruit Metabolism. Plant Cell, 2017, 29, 2753-2765.	6.6	47
26	Exploring priming responses involved in peach fruit acclimation to cold stress. Scientific Reports, 2017, 7, 11358.	3.3	83
27	Differential Metabolic Rearrangements after Cold Storage Are Correlated with Chilling Injury Resistance of Peach Fruits. Frontiers in Plant Science, 2016, 7, 1478.	3.6	58
28	Evolutionary Metabolomics Reveals Domestication-Associated Changes in Tetraploid Wheat Kernels. Molecular Biology and Evolution, 2016, 33, 1740-1753.	8.9	99
29	Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Plant Science, 2016, 242, 47-64.	3.6	60
30	Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions. Planta, 2015, 242, 677-691.	3.2	19
31	Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato. Plant Cell, 2015, 27, 485-512.	6.6	188
32	Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation. Plant Physiology, 2015, 169, 1499-1511.	4.8	40
33	Combined correlationâ€based network and <scp>mQTL</scp> analyses efficiently identified loci for branchedâ€chain amino acid, serine to threonine, and proline metabolism in tomato seeds. Plant Journal, 2015, 81, 121-133.	5.7	55
34	Variability of Metabolite Levels Is Linked to Differential Metabolic Pathways in Arabidopsis's Responses to Abiotic Stresses. PLoS Computational Biology, 2014, 10, e1003656.	3.2	17
35	The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. Journal of Experimental Botany, 2014, 65, 1619-1636.	4.8	68
36	The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.	21.4	391

#	Article	IF	CITATIONS
37	Molecular regulation of fruit ripening. Frontiers in Plant Science, 2013, 4, 198.	3.6	200
38	Characterisation of a specific class of typical low molecular weight glutenin subunits of durum wheat by a proteomic approach. Journal of Cereal Science, 2010, 51, 134-139.	3.7	27
39	Transcriptional-Metabolic Networks in \hat{l}^2 -Carotene-Enriched Potato Tubers: The Long and Winding Road to the Golden Phenotype \hat{A} \hat{A} \hat{A} . Plant Physiology, 2010, 154, 899-912.	4.8	83
40	Comparative proteomic and transcriptional profiling of a bread wheat cultivar and its derived transgenic line overexpressing a low molecular weight glutenin subunit gene in the endosperm. Proteomics, 2008, 8, 2948-2966.	2.2	65
41	Characterization of Glutenin Polymers in a Transgenic Bread Wheat Line Over-Expressing a LMW-GS. Special Publication - Royal Society of Chemistry, 2007, , 10-13.	0.0	1
42	Title is missing!. Molecular Breeding, 2003, 12, 209-222.	2.1	31