Horst Herbert Gerke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5378731/publications.pdf

Version: 2024-02-01

156 papers 6,399 citations

94433 37 h-index 76900 74 g-index

177 all docs

177 docs citations

times ranked

177

4782 citing authors

#	Article	IF	CITATIONS
1	A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resources Research, 1993, 29, 305-319.	4.2	972
2	Preferential flow descriptions for structured soils. Journal of Plant Nutrition and Soil Science, 2006, 169, 382-400.	1.9	334
3	Evaluation of a first-order water transfer term for variably saturated dual-porosity flow models. Water Resources Research, 1993, 29, 1225-1238.	4.2	300
4	Composition of Organic Matter Fractions for Explaining Wettability of Three Forest Soils. Soil Science Society of America Journal, 2005, 69, 57.	2.2	281
5	A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 2011, 115-116, 1-15.	5.6	245
6	Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media. Advances in Water Resources, 1996, 19, 343-357.	3.8	200
7	Modeling flow and transport in a two-dimensional dual-permeability system with spatially variable hydraulic properties. Journal of Hydrology, 2000, 238, 78-89.	5 . 4	178
8	Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopy. European Journal of Soil Science, 2004, 55, 219-228.	3.9	138
9	Preferential Flow Effects on Infiltration and Runoff in Grassland and Forest Soils. Vadose Zone Journal, 2011, 10, 367-377.	2.2	125
10	Modelling soil landscape genesis — A "time split―approach for hummocky agricultural landscapes. Geoderma, 2008, 145, 480-493.	5.1	122
11	Preferential Flow Patterns in Paddy Fields Using a Dye Tracer. Vadose Zone Journal, 2007, 6, 105-115.	2.2	106
12	Organic waste recycling in agriculture and related effects on soil water retention and plant available water: a review. Agronomy for Sustainable Development, 2017, 37, 1.	5. 3	101
13	Dual-permeability modeling of preferential bromide leaching from a tile-drained glacial till agricultural field. Journal of Hydrology, 2004, 289, 239-257.	5.4	95
14	Modelling the effect of chemical heterogeneity on acidification and solute leaching in overburden mine spoils. Journal of Hydrology, 1998, 209, 166-185.	5 . 4	88
15	TERENO-SOILCan: a lysimeter-network in Germany observing soil processes and plant diversity influenced by climate change. Environmental Earth Sciences, 2016, 75, 1.	2.7	73
16	Effect of Compaction on Soil Physical Properties of Differently Textured Landfill Liner Materials. Geosciences (Switzerland), 2019, 9, 1.	2.2	71
17	Estimating Hydraulic Properties of Soil Aggregate Skins from Sorptivity and Water Retention. Soil Science Society of America Journal, 2002, 66, 26-36.	2.2	67
18	Structures and hydrologic function of soil landscapes with kettle holes using an integrated hydropedological approach. Journal of Hydrology, 2010, 393, 123-132.	5 . 4	67

#	Article	IF	CITATIONS
19	Title is missing!. Plant and Soil, 1999, 213, 55-61.	3.7	64
20	DRIFT Mapping of Organic Matter Composition at Intact Soil Aggregate Surfaces. Vadose Zone Journal, 2010, 9, 317-324.	2.2	63
21	Spatial variability of potential water repellency in a lignitic mine soil afforested with Pinus nigra. Geoderma, 2001, 102, 255-274.	5.1	61
22	Patterns and processes of initial terrestrialâ€ecosystem development. Journal of Plant Nutrition and Soil Science, 2011, 174, 229-239.	1.9	61
23	Cation Exchange Capacity and Composition of Soluble Soil Organic Matter Fractions. Soil Science Society of America Journal, 2008, 72, 1278-1285.	2.2	60
24	Estimating the hydraulic functions of dual-permeability models from bulk soil data. Water Resources Research, 2002, 38, 26-1-26-11.	4.2	57
25	Longâ€ŧerm effects of crop rotation and fertilization on soil organic matter composition. European Journal of Soil Science, 2007, 58, 1460-1470.	3.9	55
26	Preferential and Unstable Flow: From the Pore to the Catchment Scale. Vadose Zone Journal, 2010, 9, 207-212.	2.2	54
27	In Situ DRIFT Characterization of Organic Matter Composition on Soil Structural Surfaces. Soil Science Society of America Journal, 2009, 73, 531-540.	2.2	53
28	Assessment of Chinese paddy-soil structure using X-ray computed tomography. Geoderma, 2008, 145, 303-314.	5.1	52
29	Dualâ€permeability model for flow in shrinking soil with dominant horizontal deformation. Water Resources Research, 2012, 48, .	4.2	51
30	Micro-scale dry bulk density variation around earthworm (Lumbricus terrestris L.) burrows based on X-ray computed tomography. Geoderma, 2014, 213, 471-477.	5.1	50
31	Assessment of preferential flow processes in a forest-reclaimed lignitic mine soil by multicell sampling of drainage water and three tracers. Journal of Hydrology, 2005, 303, 16-37.	5.4	46
32	On the role of hydrologic processes in soil and landscape evolution modeling: concepts, complications and partial solutions. Earth-Science Reviews, 2018, 185, 1088-1106.	9.1	45
33	FTIR spectral band shifts explained by OM–cation interactions. Journal of Plant Nutrition and Soil Science, 2021, 184, 388-397.	1.9	44
34	Spatial and Temporal Dynamics of Preferential Bromide Movement towards a Tile Drain. Vadose Zone Journal, 2005, 4, 79-88.	2.2	42
35	Modeling long-term compost application effects on nitrate leaching. Plant and Soil, 1999, 213, 75-92.	3.7	41
36	Spatial distributions of lignite mine spoil properties for simulating 2-D variably saturated flow and transport. Ecological Engineering, 2001, 17, 103-114.	3.6	41

#	Article	IF	CITATIONS
37	Effective Diffusion Coefficients of Soil Aggregates with Surface Skins. Soil Science Society of America Journal, 2002, 66, 1430-1438.	2.2	41
38	Modelling field-data of preferential flow in paddy soil induced by earthworm burrows. Journal of Contaminant Hydrology, 2009, 104, 126-136.	3.3	39
39	Quantification and Prediction of Nighttime Evapotranspiration for Two Distinct Grassland Ecosystems. Water Resources Research, 2019, 55, 2961-2975.	4.2	38
40	Characterization of Organic Matter Composition of Soil and Flow Path Surfaces Based on Physicochemical Principles—A Review. Advances in Agronomy, 2013, , 117-177.	5.2	37
41	Droplet infiltration and organic matter composition of intact crack and biopore surfaces from clayâ€illuvial horizons. Journal of Plant Nutrition and Soil Science, 2015, 178, 250-260.	1.9	37
42	Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrology, 2018, 11, e1991.	2.4	37
43	Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models. Water Resources Research, 2004, 40, .	4.2	36
44	Twoâ€Dimensional Dualâ€Permeability Analyses of a Bromide Tracer Experiment on a Tileâ€Drained Field. Vadose Zone Journal, 2007, 6, 651-667.	2.2	36
45	Ecological safe management of terraced rice paddy landscapes. Soil and Tillage Research, 2009, 102, 179-192.	5.6	36
46	Combining dual-continuum approach with diffusion wave model to include a preferential flow component in hillslope scale modeling of shallow subsurface runoff. Advances in Water Resources, 2012, 44, 113-125.	3.8	36
47	Morphology of physical soil crusts and infiltration patterns in an artificial catchment. Soil and Tillage Research, 2013, 129, 1-8.	5.6	35
48	Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors. Journal of Hydrology and Hydromechanics, 2016, 64, 111-120.	2.0	35
49	Modelling the impact of physical and chemical heterogeneity on solute leaching in pyritic overburden mine spoils. Ecological Engineering, 2001, 17, 91-101.	3.6	34
50	Hydraulic properties of characteristic horizons depending on relief position and structure in a hummocky glacial soil landscape. Soil and Tillage Research, 2012, 125, 123-131.	5.6	34
51	Flow path visualization in a lignitic mine soil using iodine–starch staining. Geoderma, 2004, 120, 121-135.	5.1	33
52	Spatial distribution of maize roots by complete 3D soil monolith sampling. Plant and Soil, 2009, 315, 297-314.	3.7	33
53	Estimating Hydraulic Properties of Soil Aggregate Skins from Sorptivity and Water Retention. Soil Science Society of America Journal, 2002, 66, 26.	2.2	33
54	The importance of landscape diversity for carbon fluxes at the landscape level: smallâ€scale heterogeneity matters. Wiley Interdisciplinary Reviews: Water, 2016, 3, 601-617.	6.5	32

#	Article	IF	CITATIONS
55	Water balance and leaching of dissolved organic and inorganic carbon of eroded Luvisols using high precision weighing lysimeters. Soil and Tillage Research, 2017, 165, 144-160.	5.6	32
56	Water and Dissolved Carbon Fluxes in an Eroding Soil Landscape Depending on Terrain Position. Vadose Zone Journal, 2014, 13, 1-14.	2.2	29
57	Interdisciplinary Geoâ€ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENOâ€NE). Vadose Zone Journal, 2018, 17, 1-25.	2.2	29
58	Noncontact Shrinkage Curve Determination for Soil Clods and Aggregates by Threeâ€Dimensional Optical Scanning. Soil Science Society of America Journal, 2007, 71, 1448-1454.	2.2	28
59	Simulated Preferential Water Flow and Solute Transport in Shrinking Soils. Vadose Zone Journal, 2015, 14, 1-22.	2.2	28
60	Millimetreâ€scale distribution of organic matter composition at intact biopore and crack surfaces. European Journal of Soil Science, 2013, 64, 757-769.	3.9	27
61	Soil organic matter composition along a slope in an erosion-affected arable landscape in North East Germany. Soil and Tillage Research, 2016, 156, 209-218.	5.6	27
62	Surface Boundary Conditions in Twoâ€Dimensional Dualâ€Permeability Modeling of Tile Drain Bromide Leaching. Vadose Zone Journal, 2008, 7, 1287-1301.	2.2	26
63	Solute Mass Transfer Effects in Twoâ€Dimensional Dualâ€Permeability Modeling of Bromide Leaching From a Tileâ€Drained Field. Vadose Zone Journal, 2013, 12, 1-21.	2.2	26
64	Interactions between crop, water, and dissolved organic and inorganic carbon in a hummocky landscape with erosion-affected pedogenesis. Soil and Tillage Research, 2016, 156, 230-244.	5.6	26
65	Relating soil organic matter composition to soil water repellency for soil biopore surfaces different in history from two Bt horizons of a Haplic Luvisol. Ecohydrology, 2018, 11, e1949.	2.4	25
66	Macroscopic Representation of the Interface between Flow Domains in Structured Soil. Vadose Zone Journal, 2012, 11, vzj2011.0125.	2.2	24
67	Analyzing organic matter composition at intact biopore and crack surfaces by combining DRIFT spectroscopy and Pyrolysisâ€Field Ionization Mass Spectrometry [#] . Journal of Plant Nutrition and Soil Science, 2016, 179, 5-17.	1.9	24
68	Spatial Distribution of Mucilage in the Rhizosphere Measured With Infrared Spectroscopy. Frontiers in Environmental Science, 2018, 6, .	3.3	24
69	Describing water flow in macroporous field soils using the modified macro model. Journal of Hydrology, 1999, 215, 135-152.	5.4	23
70	Effects of Groundâ€Dwelling Beetle Burrows on Infiltration Patterns and Pore Structure of Initial Soil Surfaces. Vadose Zone Journal, 2012, 11, .	2.2	23
71	Estimating spatial distributions of hydraulic parameters for a two-scale structured heterogeneous lignitic mine soil. Journal of Hydrology, 2005, 312, 109-124.	5.4	22
72	Root development of winter wheat in erosionâ€affected soils depending on the position in a hummocky ground moraine soil landscape. Journal of Plant Nutrition and Soil Science, 2018, 181, 147-157.	1.9	22

#	Article	IF	CITATIONS
73	Responses of soil water storage and crop water use efficiency to changing climatic conditions: a lysimeter-based space-for-time approach. Hydrology and Earth System Sciences, 2020, 24, 1211-1225.	4.9	22
74	Evaluation of a core sampling scheme to characterize root length density of maize. Plant and Soil, 2009, 316, 205-215.	3.7	21
75	Evaluation of remotelyâ€sensed DEMs and modification based on plausibility rules and initial sediment budgets of an artificiallyâ€created catchment. Earth Surface Processes and Landforms, 2012, 37, 708-725.	2.5	20
76	Comparison of real evapotranspiration measured by weighing lysimeters with simulations based on the Penman formula and a crop growth model. Journal of Hydrology and Hydromechanics, 2013, 61, 161-172.	2.0	20
77	Scales of Water Retention Dynamics Observed in Eroded Luvisols from an Arable Postglacial Soil Landscape. Vadose Zone Journal, 2017, 16, 1-17.	2.2	20
78	3D initial sediment distribution and quantification of mass balances of an artificially-created hydrological catchment based on DEMs from aerial photographs using GOCAD. Physics and Chemistry of the Earth, 2011, 36, 87-100.	2.9	19
79	Modelling aeolian sediment transport during initial soil development on an artificial catchment using WEPS and aerial images. Soil and Tillage Research, 2011, 117, 148-162.	5.6	19
80	Dualâ€Permeability Model Improvements for Representation of Preferential Flow in Fractured Clays. Water Resources Research, 2020, 56, e2020WR027304.	4.2	19
81	Anisotropy of unsaturated soil hydraulic properties of eroded Luvisol after conversion to hayfield comparing alfalfa and grass plots. Soil and Tillage Research, 2020, 198, 104553.	5.6	19
82	Vertical bulk density distribution in C-horizons from marley till as indicator for erosion history in a hummocky post-glacial soil landscape. Soil and Tillage Research, 2012, 125, 116-122.	5.6	18
83	Initial hydroâ€geomorphic development and rill network evolution in an artificial catchment. Earth Surface Processes and Landforms, 2013, 38, 1496-1512.	2.5	18
84	Geophysicalâ€Based Modeling of a Kettle Hole Catchment of the Morainic Soil Landscape. Vadose Zone Journal, 2013, 12, 1-18.	2.2	18
85	Impact of Soil Microstructure Geometry on DRIFT Spectra: Comparisons with Beam Trace Modeling. Soil Science Society of America Journal, 2010, 74, 1976-1986.	2.2	17
86	Crop growth and soil water fluxes at erosionâ€affected arable sites: Using weighing lysimeter data for model intercomparison. Vadose Zone Journal, 2020, 19, e20058.	2.2	17
87	Noninvasive Observations of Flow Patterns in Locally Heterogeneous Mine Soils using Neutron Radiation. Vadose Zone Journal, 2010, 9, 362-372.	2.2	16
88	Separation of Soil Macropore Types in Threeâ€Dimensional Xâ∈Ray Computed Tomography Images Based on Pore Geometry Characteristics. Vadose Zone Journal, 2019, 18, 1-13.	2.2	16
89	Root system development of Lotus corniculatus L. in calcareous sands with embedded finer-textured fragments in an initial soil. Plant and Soil, 2013, 368, 281-296.	3.7	15
90	Two-dimensional distribution of soil organic carbon at intact macropore surfaces in BT-horizons. Soil and Tillage Research, 2018, 176, 1-9.	5.6	15

#	Article	IF	Citations
91	Assessment of Leachate Production from a Municipal Solid-Waste Landfill through Water-Balance Modeling. Geosciences (Switzerland), 2018, 8, 372.	2.2	15
92	Single- and dual-porosity modelling of flow in reclaimed mine soil cores with embedded lignitic fragments. Journal of Contaminant Hydrology, 2009, 104, 90-106.	3.3	14
93	Uncertainty of variance component estimates in nested sampling: a case study on the fieldâ€scale spatial variability of a restored soil. European Journal of Soil Science, 2011, 62, 479-495.	3.9	14
94	Spectroscopic characterization of mucilage (Chia seed) and polygalacturonic acid. Journal of Plant Nutrition and Soil Science, 2019, 182, 888-895.	1.9	14
95	EVALUATION OF THE ARYA-PARIS MODEL FOR ESTIMATING WATER RETENTION CHARACTERISTICS OF LIGNITIC MINE SOILS. Soil Science, 2005, 170, 483-494.	0.9	13
96	Root effects on soil water and hydraulic properties. Biologia (Poland), 2007, 62, 557-561.	1.5	13
97	Correcting Microtopography Effects on DRIFT Mapping Signals of Organic Matter at Intact Soil Aggregate Surfaces. Soil Science Society of America Journal, 2011, 75, 1626-1639.	2.2	13
98	Response of Soil Dehydrogenase Activity to Salinity and Cadmium Species. Journal of Soil Science and Plant Nutrition, 2020, 20, 530-536.	3.4	13
99	Roughness of biopores and cracks in Bt-horizons assessed by confocal laser scanning microscopy. Journal of Plant Nutrition and Soil Science, 2016, 179, 529-536.	1.9	12
100	Autocorrelation analysis of high resolution weighing lysimeter time series as a basis for determination of precipitation. Journal of Plant Nutrition and Soil Science, 2016, 179, 784-798.	1.9	12
101	Spatial Distribution of Organic Matter Compounds at Intact Macropore Surfaces Predicted by DRIFT Spectroscopy. Vadose Zone Journal, 2017, 16, 1-11.	2.2	12
102	Quantifying Subsurface Lateral Flow along Sloping Horizon Boundaries in Soil Profiles of a Hummocky Ground Moraine. Vadose Zone Journal, 2018, 17, 170106.	2.2	12
103	Explaining soil organic matter composition based on associations between OM and polyvalent cations. Journal of Plant Nutrition and Soil Science, 2018, 181, 721-736.	1.9	11
104	Fluorescence imaging for mm-scale observation of macropore-matrix mass transfer: Calibration experiments. Geoderma, 2020, 360, 114002.	5.1	11
105	Modeling Two-Dimensional Water Flow and Bromide Transport in a Heterogeneous Lignitic Mine Soil. Vadose Zone Journal, 2006, 5, 14-26.	2.2	10
106	Processes and Modeling of Initial Soil and Landscape Development: A Review. Vadose Zone Journal, 2016, 15, 1-20.	2.2	10
107	Shrinkage Characteristics of Boulder Marl as Sustainable Mineral Liner Material for Landfill Capping Systems. Sustainability, 2018, 10, 4025.	3.2	10
108	Field Measurements of Air and Water Pressures in a Heterogeneous Forestâ€Reclaimed Lignitic Mine Soil. Vadose Zone Journal, 2007, 6, 849-854.	2.2	9

#	Article	IF	Citations
109	A structure generator for modelling the initial sediment distribution of an artificial hydrologic catchment. Hydrology and Earth System Sciences, 2011, 15, 3617-3638.	4.9	9
110	Tracer, Dissolved Organic Carbon, and Colloid Leaching from Erosionâ€Affected Arable Hillslope Soils. Vadose Zone Journal, 2015, 14, 1-18.	2.2	9
111	Representation of Plotâ€Scale Soil Heterogeneity in Dualâ€Domain Effective Flow and Transport Models with Mass Exchange. Vadose Zone Journal, 2019, 18, 1-14.	2.2	9
112	Effect of artificial soil compaction in landfill capping systems on anisotropy of airâ€permeability. Journal of Plant Nutrition and Soil Science, 2020, 183, 144-154.	1.9	9
113	Soil Nitrogen Dynamics in a Managed Temperate Grassland Under Changed Climatic Conditions. Water (Switzerland), 2021, 13, 931.	2.7	9
114	Modelling of soil mechanical stability and hydraulic permeability of the interface between coated biopore and matrix pore regions. Geoderma, 2022, 410, 115673.	5.1	9
115	Interpretation of infrared spectra for OM characterization of soil structural surfaces of Btâ€horizons. Journal of Plant Nutrition and Soil Science, 2016, 179, 29-38.	1.9	8
116	Thematic Issue on Soil Water Infiltration. Journal of Hydrology and Hydromechanics, 2017, 65, 205-208.	2.0	8
117	Modeling Solute Mass Exchange between Pore Regions in Slurry-Injected Soil Columns during Intermittent Irrigation. Vadose Zone Journal, 2018, 17, 180006.	2.2	8
118	Spatially-distributed microbial enzyme activities at intact, coated macropore surfaces in Luvisol Bt-horizons. Soil Biology and Biochemistry, 2021, 156, 108193.	8.8	8
119	Determining Millimeterâ€Scale Maps of Cation Exchange Capacity at Macropore Surfaces in Bt Horizons. Vadose Zone Journal, 2019, 18, 1-11.	2.2	8
120	Response of water fluxes and biomass production to climate change in permanent grassland soil ecosystems. Hydrology and Earth System Sciences, 2021, 25, 6087-6106.	4.9	8
121	Mercury intrusion porosimetry and centrifuge methods for extendedâ€range retention curves of soil and porous rock samples. Vadose Zone Journal, 2022, 21, .	2.2	8
122	A Threeâ€Dimensional Structure and Process Model for Integrated Hydroâ€Geoâ€Pedologic Analysis of a Constructed Hydrological Catchment. Vadose Zone Journal, 2013, 12, 1-17.	2.2	7
123	Volumeâ€related quantification of organic carbon content and cation exchange capacity of macropore surfaces in Bt horizons. Vadose Zone Journal, 2020, 19, e20069.	2.2	7
124	Permeabilidad y difusi \tilde{A}^3 n de aire en el subsuelo de un Andisol sujeto a distintas estrategias de mejoramiento de praderas. Agro Sur, 2018, 46, 23-34.	0.2	7
125	Discrete element modeling of aggregate shape and internal structure effects on Weibull distribution of tensile strength. Soil and Tillage Research, 2022, 219, 105341.	5.6	7
126	Anisotropy of unsaturated hydraulic properties of compacted mineral capping systems seven years after construction. Soil and Tillage Research, 2020, 204, 104702.	5.6	6

#	Article	IF	Citations
127	Wavelet analysis of soil water state variables for identification of lateral subsurface flow: Lysimeter vs. field data. Vadose Zone Journal, 2021, 20, e20129.	2.2	6
128	Estimation of Stagnosol Hydraulic Properties and Water Flow Using Uni- and Bimodal Porosity Models in Erosion-Affected Hillslope Vineyard Soils. Agronomy, 2022, 12, 33.	3.0	6
129	Scenarioâ€Based Threeâ€Dimensional Distributed Sediment Structures for a Constructed Hydrological Catchment. Vadose Zone Journal, 2013, 12, 1-23.	2.2	5
130	Estimability Analysis for Optimization of Hysteretic Soil Hydraulic Parameters Using Data of a Field Irrigation Experiment. Transport in Porous Media, 2014, 103, 535-562.	2.6	5
131	Suitability of Boulder Marl and Marsh Clay as Sealing Substrates for Landfill Capping Systemsâ€"A Practical Comparison. Geosciences (Switzerland), 2018, 8, 356.	2.2	5
132	Laser-based 3D microscopic gauging of soil aggregate coating thickness and volume. Soil and Tillage Research, 2020, 204, 104715.	5.6	5
133	Effects of shallow non-inversion tillage on sandy loam soil properties and winter rye yield in organic farming. Soil and Tillage Research, 2022, 222, 105435.	5.6	5
134	Water table effects on measured and simulated fluxes in weighing lysimeters for differently-textured soils. Journal of Hydrology and Hydromechanics, 2015, 63, 82-92.	2.0	4
135	Analyzing Managementâ€Induced Dynamics of Soluble Organic Matter Composition in Soils from Longâ€Term Field Experiments. Vadose Zone Journal, 2016, 15, 1-10.	2.2	4
136	Frontiers in Hydropedology: Interdisciplinary Research from Soil Architecture to the Critical Zone. Vadose Zone Journal, 2018, 17, 1-4.	2.2	4
137	Bypass Flow in Soil. Encyclopedia of Earth Sciences Series, 2011, , 100-105.	0.1	4
138	Simultaneous determination of wettability and shrinkage in an organic residue amended loamy topsoil. Journal of Hydrology and Hydromechanics, 2020, 68, 111-118.	2.0	4
139	Brilliant Blue sorption characteristics of clay-organic aggregate coatings from Bt horizons. Soil and Tillage Research, 2020, 201, 104635.	5.6	4
140	Soil Surface Micro-Topography by Structure-from-Motion Photogrammetry for Monitoring Density and Erosion Dynamics. Frontiers in Environmental Science, 2022, 9, .	3.3	4
141	Dynamics of Soil CO2 Efflux and Vertical CO2 Production in a European Beech and a Scots Pine Forest. Frontiers in Forests and Global Change, 2022, 5, .	2.3	4
142	Same soil, different climate: Crop model intercomparison on translocated lysimeters. Vadose Zone Journal, 2022, 21, .	2.2	4
143	Soil Variability and Biogeochemical Fluxes: Toward a Better Understanding of Soil Processes at the Land Surface. Vadose Zone Journal, 2017, 16, 1-4.	2.2	3
144	Approach for using measured soil gas diffusion coefficients in Hydrus 1D with examples from forest soils. Journal of Plant Nutrition and Soil Science, 2020, 183, 562-566.	1.9	2

#	Article	IF	CITATIONS
145	Macropore–matrix mass transfer of reactive solutes quantified by fluorescence imaging. Vadose Zone Journal, 2020, 19, e20078.	2.2	2
146	3D-Wurzelverteilung SechzehnjÄ h riger Schwarzkiefern in einem Kippenboden im Vergleich mit markierten FlieÄŸwegen., 2001,, 18-23.		2
147	Pr̮renzielle Wasser- und Luftbewegung in heterogenen aufgeforsteten Kippenb̦den im Lausitzer Braunkohletagebaugebiet (Teilprojekt 19). , 2000, , 258-274.		2
148	Tracing lateral subsurface flow in layered soils by undisturbed monolith sampling, targeted laboratory experiments, and modelâ€based analysis. Vadose Zone Journal, 2022, 21, .	2.2	2
149	Title is missing!. , 1999, , 163-168.		1
150	Title is missing!. , 1999, , 169-184.		1
151	Effects of Aggregate Skins on Flow and Transport in Structured Soil. , 0, , .		O
152	Effects of Chemical Reaction Variability on Preferential Flow., 0, , .		0
153	Preface to the special section "Biohydrology ―Water for life― Ecohydrology, 2015, 8, 353-354.	2.4	O
154	Beschreibung von Transport- und UmwandlungsvorgÄ n gen in der wasserungesÄ n igten Zone heterogener Braunkohletagebau-Abraumkippen der Lausitz (Teilprojekt 15)., 2000,, 219-237.		0
155	Zusammenschau Transportprozesse. , 2000, , 332-346.		0
156	Structural Heterogeneity of Soil Clods: Correlating Weibull Parameters to Fracture Surface Topography. SSRN Electronic Journal, 0, , .	0.4	0