Manuela Neumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5378546/publications.pdf

Version: 2024-02-01

6613 5539 30,863 162 79 163 citations h-index g-index papers 184 184 184 19050 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43. Nature Communications, 2022, 13, 1223.	12.8	29
2	Frontotemporal Lobar Degeneration TDP-43-Immunoreactive Pathological Subtypes: Clinical and Mechanistic Significance. Advances in Experimental Medicine and Biology, 2021, 1281, 201-217.	1.6	26
3	\hat{l}^3 H2AX foci assay in glioblastoma: Surgical specimen versus corresponding stem cell culture. Radiotherapy and Oncology, 2021, 159, 119-125.	0.6	1
4	Contribution of RNA/DNA Binding Protein Dysfunction in Oligodendrocytes in the Pathogenesis of the Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration Spectrum Diseases. Frontiers in Neuroscience, 2021, 15, 724891.	2.8	6
5	Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathologica, 2021, 141, 159-172.	7.7	107
6	Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. Nature Communications, 2021, 12, 5739.	12.8	42
7	Do longitudinal cerebrospinal fluid profiles correspond to postmortem brain pathology in LRRK 2 Parkinson's disease?. European Journal of Neurology, 2020, 27, e5-e6.	3.3	0
8	Subcortical TDP-43 pathology patterns validate cortical FTLD-TDP subtypes and demonstrate unique aspects of C9orf72 mutation cases. Acta Neuropathologica, 2020, 139, 83-98.	7.7	37
9	Antibody against TDP-43 phosphorylated at serine 375 suggests conformational differences of TDP-43 aggregates among FTLD–TDP subtypes. Acta Neuropathologica, 2020, 140, 645-658.	7.7	23
10	Congenic expression of poly-GA but not poly-PR in mice triggers selective neuron loss and interferon responses found in C9orf72 ALS. Acta Neuropathologica, 2020, 140, 121-142.	7.7	44
11	Neurofilaments in spinocerebellar ataxia type 3: blood biomarkers at the preataxic and ataxic stage in humans and mice. EMBO Molecular Medicine, 2020, 12, e11803.	6.9	73
12	Ultra-High Field MRI in Alzheimer's Disease: Effective Transverse Relaxation Rate and Quantitative Susceptibility Mapping of Human Brain In Vivo and Ex Vivo compared to Histology. Journal of Alzheimer's Disease, 2020, 73, 1481-1499.	2.6	24
13	EIF2AK3 variants in Dutch patients with Alzheimer's disease. Neurobiology of Aging, 2019, 73, 229.e11-229.e18.	3.1	25
14	LATE to the PART-y. Brain, 2019, 142, e47-e47.	7.6	44
15	Refining the Spectrum of Neuronal Intranuclear Inclusion Disease: A Case Report. Journal of Neuropathology and Experimental Neurology, 2019, 78, 665-670.	1.7	21
16	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90
17	High frequency of H3 K27M mutations in adult midline gliomas. Journal of Cancer Research and Clinical Oncology, 2019, 145, 839-850.	2.5	50
18	Review: Neuropathology of nonâ€tau frontotemporal lobar degeneration. Neuropathology and Applied Neurobiology, 2019, 45, 19-40.	3.2	93

#	Article	IF	CITATIONS
19	Childhood supratentorial ependymomas with <i>YAP1â€MAMLD1</i> fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathology, 2019, 29, 205-216.	4.1	75
20	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
21	Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers. Acta Neuropathologica Communications, 2018, 6, 72.	5.2	87
22	Fused in Sarcoma Neuropathology in Neurodegenerative Disease. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024299.	6.2	25
23	Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathologica, 2017, 134, 79-96.	7.7	83
24	Does Sporadic Amyotrophic Lateral Sclerosis Spread via Axonal Connectivities?. Neurology International Open, 2017, 01, E136-E141.	0.4	19
25	Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathologica, 2017, 133, 79-90.	7.7	68
26	Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. Journal of Neurochemistry, 2016, 138, 54-70.	3.9	252
27	TDP-43 pathology and cognition in ALS. Neurology, 2016, 87, 1019-1023.	1.1	45
28	Frontotemporal dementia: from molecular mechanisms to therapy. Journal of Neurochemistry, 2016, 138, 3-5.	3.9	13
29	Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases. Neuron, 2016, 91, 56-66.	8.1	289
30	Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathologica, 2016, 131, 587-604.	7.7	76
31	Novel cases of amyotrophic lateral sclerosis after treatment of cerebral arteriovenous malformationss. Swiss Medical Weekly, 2016, 146, w14361.	1.6	3
32	Reply: PRKAR1B mutations are a rare cause of FUS negative neuronal intermediate filament inclusion disease. Brain, 2015, 138, e358-e358.	7.6	0
33	Neuropathological assessments of the pathology in frontotemporal lobar degeneration with TDP43-positive inclusions: an inter-laboratory study by the BrainNet Europe consortium. Journal of Neural Transmission, 2015, 122, 957-972.	2.8	25
34	PART is part of Alzheimer disease. Acta Neuropathologica, 2015, 129, 749-756.	7.7	256
35	Malignant optic glioma – the spectrum of disease in a case series. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253, 1187-1194.	1.9	36
36	Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathologica, 2015, 130, 845-861.	7.7	204

#	Article	IF	Citations
37	${\sf A\hat{l}^2}$ seeds resist inactivation by formaldehyde. Acta Neuropathologica, 2014, 128, 477-484.	7.7	58
38	Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene. Molecular Neurodegeneration, 2014, 9, 38.	10.8	63
39	Mitochondrial Dysfunction and Decrease in Body Weight of a Transgenic Knock-in Mouse Model for TDP-43. Journal of Biological Chemistry, 2014, 289, 10769-10784.	3.4	100
40	The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathologica, 2014, 127, 347-357.	7.7	164
41	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	7.7	123
42	PRKAR1B mutation associated with a new neurodegenerative disorder with unique pathology. Brain, 2014, 137, 1361-1373.	7.6	54
43	Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiology of Aging, 2014, 35, 2421.e13-2421.e17.	3.1	74
44	Frontotemporal lobar degeneration and amyotrophic lateral sclerosis: Molecular similarities and differences. Revue Neurologique, 2013, 169, 793-798.	1.5	23
45	Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS. Neurobiology of Aging, 2013, 34, 2235.e11-2235.e13.	3.1	13
46	hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathologica, 2013, 125, 413-423.	7.7	302
47	Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathologica, 2013, 126, 859-879.	7.7	298
48	Truncating mutations in <i><scp>FUS</scp>/<scp>TLS</scp></i> give rise to a more aggressive <scp>ALS</scp> â€phenotype than missense mutations: a clinicoâ€genetic study in <scp>G</scp> ermany. European Journal of Neurology, 2013, 20, 540-546.	3.3	58
49	FAS-Dependent Cell Death in α-Synuclein Transgenic Oligodendrocyte Models of Multiple System Atrophy. PLoS ONE, 2013, 8, e55243.	2.5	28
50	Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO Journal, 2012, 31, 4258-4275.	7.8	266
51	Requirements for Stress Granule Recruitment of Fused in Sarcoma (FUS) and TAR DNA-binding Protein of 43 kDa (TDP-43). Journal of Biological Chemistry, 2012, 287, 23079-23094.	3.4	241
52	Creutzfeldt-Jakob Disease Revealed by a Logopenic Variant of Primary Progressive Aphasia. European Neurology, 2012, 67, 360-362.	1.4	16
53	Recent biomarker approaches in the diagnosis of frontotemporal lobar degeneration/Neurochemische AnsÃŧze in der Diagnose der Frontotemporalen Lobädegeneration. Laboratoriums Medizin, 2012, 36, .	0.6	1
54	Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations. Acta Neuropathologica, 2012, 124, 705-716.	7.7	74

#	Article	IF	Citations
55	Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects. Acta Neuropathologica, 2012, 124, 373-382.	7.7	89
56	Body mass index is associated with biological CSF markers of core brain pathology in Alzheimer's disease. Neurobiology of Aging, 2012, 33, e1-e2.	3.1	589
57	Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype. Neurobiology of Aging, 2012, 33, 2950.e5-2950.e7.	3.1	83
58	Advances in understanding the molecular basis of frontotemporal dementia. Nature Reviews Neurology, 2012, 8, 423-434.	10.1	353
59	FET proteins in frontotemporal dementia and amyotrophic lateral sclerosis. Brain Research, 2012, 1462, 40-43.	2.2	71
60	Differential Sialylation of Serpin A1 in the Early Diagnosis of Parkinson's Disease Dementia. PLoS ONE, 2012, 7, e48783.	2.5	37
61	Nicht-Alzheimer-Demenzen. , 2012, , 209-222.		0
62	Glycogen synthase kinase- $3\hat{l}^2$ is a crucial mediator of signal-induced RelB degradation. Oncogene, 2011, 30, 2485-2492.	5.9	32
63	Distinct pathological subtypes of FTLD-FUS. Acta Neuropathologica, 2011, 121, 207-218.	7.7	139
64	Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation. Acta Neuropathologica, 2011, 122, 87-98.	7.7	153
65	Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathologica, 2011, 122, 137-153.	7.7	375
66	A harmonized classification system for FTLD-TDP pathology. Acta Neuropathologica, 2011, 122, 111-113.	7.7	817
67	Novel Types of Frontotemporal Lobar Degeneration: Beyond Tau and TDP-43. Journal of Molecular Neuroscience, 2011, 45, 402-408.	2.3	33
68	FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain, 2011, 134, 2595-2609.	7.6	247
69	Nucleolar Disruption in Dopaminergic Neurons Leads to Oxidative Damage and Parkinsonism through Repression of Mammalian Target of Rapamycin Signaling. Journal of Neuroscience, 2011, 31, 453-460.	3.6	136
70	Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathologica, 2010, 119, 1-4.	7.7	854
71	FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathologica, 2010, 120, 33-41.	7.7	222
72	TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurology, The, 2010, 9, 995-1007.	10.2	816

#	Article	IF	CITATIONS
73	Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO Journal, 2010, 29, 209-221.	7.8	200
74	ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO Journal, 2010, 29, 2841-2857.	7.8	717
75	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	21.4	479
76	The Spectrum of Mutations in Progranulin. Archives of Neurology, 2010, 67, 161-70.	4.5	166
77	Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Human Molecular Genetics, 2010, 19, 1741-1755.	2.9	171
78	TDP-43 Mediates Degeneration in a Novel <i>Drosophila</i> Model of Disease Caused by Mutations in VCP/p97. Journal of Neuroscience, 2010, 30, 7729-7739.	3.6	243
79	Novel missense and truncating mutations in <i>FUS/TLS</i> in familial ALS. Neurology, 2010, 75, 815-817.	1.1	75
80	A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition. Brain, 2010, 133, 1391-1402.	7.6	109
81	Reply: Very early-onset frontotemporal dementia with no family history predicts underlying fused in sarcoma pathology. Brain, 2010, 133, e159-e159.	7.6	0
82	The molecular basis of frontotemporal dementia. Expert Reviews in Molecular Medicine, 2009, 11, e23.	3.9	69
83	Transactive Response DNA-Binding Protein 43 Burden in Familial Alzheimer Disease and Down Syndrome. Archives of Neurology, 2009, 66, 1483-8.	4.5	61
84	Phenotypic heterogeneity and genetic modifiers in prion disease caused by a Pro102Leu mutation in the PRNP gene. Nature Clinical Practice Neurology, 2009, 5, 68-69.	2.5	3
85	Molecular Neuropathology of TDP-43 Proteinopathies. International Journal of Molecular Sciences, 2009, 10, 232-246.	4.1	137
86	A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain, 2009, 132, 2922-2931.	7.6	628
87	Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. Journal of Biological Chemistry, 2009, 284, 8516-8524.	3.4	304
88	Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica, 2009, 117, 15-18.	7.7	377
89	Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathologica, 2009, 117, 137-149.	7.7	466
90	Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathologica, 2009, 118, 605-616.	7.7	237

#	Article	IF	Citations
91	FUS pathology in basophilic inclusion body disease. Acta Neuropathologica, 2009, 118, 617-627.	7.7	222
92	Proteolytic processing of TAR DNA binding proteinâ€43 by caspases produces Câ€terminal fragments with disease defining properties independent of progranulin. Journal of Neurochemistry, 2009, 110, 1082-1094.	3.9	142
93	Nuclear and neuritic distribution of serine-129 phosphorylated \hat{l}_{\pm} -synuclein in transgenic mice. Neuroscience, 2009, 160, 796-804.	2.3	116
94	Clinical and Pathological Continuum of Multisystem TDP-43 Proteinopathies. Archives of Neurology, 2009, 66, 180-9.	4.5	232
95	Pick-Komplex und andere fokale Hirnatrophien. , 2009, , 123-139.		1
96	TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathologica, 2008, 115, 305-311.	7.7	58
97	TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathologica, 2008, 116, 147-157.	7.7	77
98	Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. Journal of Neurology, 2008, 255, 1231-1235.	3.6	72
99	TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurology, The, 2008, 7, 409-416.	10.2	636
100	Enrichment of C-Terminal Fragments in TAR DNA-Binding Protein-43 Cytoplasmic Inclusions in Brain but not in Spinal Cord of Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. American Journal of Pathology, 2008, 173, 182-194.	3.8	284
101	Neurodegeneration and Motor Dysfunction in a Conditional Model of Parkinson's Disease. Journal of Neuroscience, 2008, 28, 2471-2484.	3.6	164
102	Definite multiple system atrophy in a German family. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 80, 449-450.	1.9	52
103	Missense Mutations in the Progranulin Gene Linked to Frontotemporal Lobar Degeneration with Ubiquitin-immunoreactive Inclusions Reduce Progranulin Production and Secretion. Journal of Biological Chemistry, 2008, 283, 1744-1753.	3.4	155
104	TDP-43 in Cerebrospinal Fluid of Patients With Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Archives of Neurology, 2008, 65, 1481.	4.5	186
105	Two German Kindreds With Familial Amyotrophic Lateral Sclerosis Due to TARDBP Mutations. Archives of Neurology, 2008, 65, 1185-9.	4.5	138
106	Concomitant TAR-DNA-Binding Protein 43 Pathology Is Present in Alzheimer Disease and Corticobasal Degeneration but Not in Other Tauopathies. Journal of Neuropathology and Experimental Neurology, 2008, 67, 555-564.	1.7	328
107	Cerebral Involvement in McLeod Syndrome: The First Autopsy Revisited. , 2008, , 205-215.		5
108	Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology, 2007, 68, 1274-1283.	1.1	206

#	Article	IF	Citations
109	TDP-43 Pathologic Lesions and Clinical Phenotype in Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions. Archives of Neurology, 2007, 64, 1449.	4.5	61
110	TDP-43 Proteinopathy in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Archives of Neurology, 2007, 64, 1388.	4.5	179
111	TDP-43 proteinopathies: a new class of proteinopathies. Future Neurology, 2007, 2, 549-557.	0.5	2
112	Clinical, Genetic, and Pathologic Characteristics of Patients With Frontotemporal Dementia and Progranulin Mutations. Archives of Neurology, 2007, 64, 1148.	4.5	52
113	TDP-43 in the Ubiquitin Pathology of Frontotemporal Dementia With VCP Gene Mutations. Journal of Neuropathology and Experimental Neurology, 2007, 66, 152-157.	1.7	295
114	TDP-43-Positive White Matter Pathology in Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions. Journal of Neuropathology and Experimental Neurology, 2007, 66, 177-183.	1.7	201
115	Age-dependent cognitive decline and amygdala pathology in α-synuclein transgenic mice. Neurobiology of Aging, 2007, 28, 1421-1435.	3.1	154
116	TDP-43 in Familial and Sporadic Frontotemporal Lobar Degeneration with Ubiquitin Inclusions. American Journal of Pathology, 2007, 171, 227-240.	3.8	446
117	2.018 Neuropathology of conditional alpha-synuclein transgenic mouse models of Parkinson's disease. Parkinsonism and Related Disorders, 2007, 13, S90.	2.2	0
118	TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. Journal of Neuropathology and Experimental Neurology, 2007, 66, 425.	1.7	1
119	Pathological TDPâ€43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with <i>SOD1</i>	5.3	840
120	Microglial activation mediates neurodegeneration related to oligodendroglial $\hat{l}\pm\hat{a}\in s$ ynucleinopathy: Implications for multiple system atrophy. Movement Disorders, 2007, 22, 2196-2203.	3.9	203
121	The 20S proteasome isolated from Alzheimer?s disease brain shows post-translational modifications but unchanged proteolytic activity. Journal of Neurochemistry, 2007, 101, 1483-1490.	3.9	46
122	Absence of heterogeneous nuclear ribonucleoproteins and survival motor neuron protein in TDP-43 positive inclusions in frontotemporal lobar degeneration. Acta Neuropathologica, 2007, 113, 543-548.	7.7	53
123	TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathologica, 2007, 114, 63-70.	7.7	198
124	Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathologica, 2007, 114, 5-22.	7.7	978
125	Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science, 2006, 314, 130-133.	12.6	5,422
126	Pathological Heterogeneity of Frontotemporal Lobar Degeneration with Ubiquitin-Positive Inclusions Delineated by Ubiquitin Immunohistochemistry and Novel Monoclonal Antibodies. American Journal of Pathology, 2006, 169, 1343-1352.	3.8	296

#	Article	IF	CITATIONS
127	Comparison of extent of tau pathology in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), frontotemporal lobar degeneration with Pick bodies and early onset Alzheimer's disease. Neuropathology and Applied Neurobiology, 2006, 32, 374-387.	3.2	34
128	An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. Acta Neuropathologica, 2006, 111, 329-340.	7.7	91
129	A New family with frontotemporal dementia with intronic 10+3 splice site mutation in the tau gene: neuropathology and molecular effects. Neuropathology and Applied Neurobiology, 2005, 31, 362-373.	3.2	23
130	Cerebral gene expression profiles in sporadic Creutzfeldt-Jakob disease. Annals of Neurology, 2005, 58, 242-257.	5.3	51
131	Creutzfeldt-Jakob disease in a patient with an R208H mutation of the prion protein gene (PRNP) and a 17-kDa prion protein fragment. Acta Neuropathologica, 2005, 109, 443-448.	7.7	29
132	Pattern of interleukin-6 receptor complex immunoreactivity between cortical regions of rapid autopsy normal and Alzheimer's disease brain. European Archives of Psychiatry and Clinical Neuroscience, 2005, 255, 269-278.	3.2	59
133	Novel G335V mutation in the tau gene associated with early onset familial frontotemporal dementia. Neurogenetics, 2005, 6, 91-95.	1.4	39
134	Frontotemporal Lobar Degeneration. Archives of Neurology, 2005, 62, 925-30.	4.5	354
135	Breaking an Absolute Species Barrier: Transgenic Mice Expressing the Mink PrP Gene Are Susceptible to Transmissible Mink Encephalopathy. Journal of Virology, 2005, 79, 14971-14975.	3.4	19
136	Tau Protein, A \hat{I}^2 42 and S-100B Protein in Cerebrospinal Fluid of Patients with Dementia with Lewy Bodies. Dementia and Geriatric Cognitive Disorders, 2005, 19, 164-170.	1.5	75
137	The Alzheimer Variant of Lewy Body Disease: A Pathologically Confirmed Case-Control Study. Dementia and Geriatric Cognitive Disorders, 2005, 20, 89-94.	1.5	20
138	Oxidative Stress in Transgenic Mice with Oligodendroglial α-Synuclein Overexpression Replicates the Characteristic Neuropathology of Multiple System Atrophy. American Journal of Pathology, 2005, 166, 869-876.	3.8	191
139	Pathological properties of the Parkinson?s disease-associated protein DJ-1 in a-synucleinopathies and tauopathies: relevance for multiple system atrophy and Pick?s disease. Acta Neuropathologica, 2004, 107, 489-496.	7.7	140
140	Regional Distribution of Proteinase K-Resistant \hat{l}_{\pm} -Synuclein Correlates with Lewy Body Disease Stage. Journal of Neuropathology and Experimental Neurology, 2004, 63, 1225-1235.	1.7	55
141	βâ€amyloid peptides in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Annals of Neurology, 2003, 54, 263-267.	5.3	82
142	The amyloidâ \in ($ \hat{x} ^2$) ($ \hat{x} ^2$) peptide pattern in cerebrospinal fluid in Alzheimer's disease: evidence of a novel carboxyterminally elongated A $ \hat{x} ^2$) peptide. Rapid Communications in Mass Spectrometry, 2003, 17, 1291-1296.	1.5	106
143	Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt–Jakob disease. Neurology, 2002, 58, 192-197.	1.1	263
144	Structure/function of αâ€synuclein in health and disease: rational development of animal models for Parkinson's and related diseases. Journal of Neurochemistry, 2002, 82, 449-457.	3.9	76

#	Article	IF	CITATIONS
145	Hyperphosphorylation and insolubility of αâ€synuclein in transgenic mouse oligodendrocytes. EMBO Reports, 2002, 3, 583-588.	4.5	290
146	Misfolded proteinase K–resistant hyperphosphorylated α-synuclein in aged transgenic mice with locomotor deterioration and in human α-synucleinopathies. Journal of Clinical Investigation, 2002, 110, 1429-1439.	8.2	195
147	Misfolded proteinase K–resistant hyperphosphorylated α-synuclein in aged transgenic mice with locomotor deterioration and in human α-synucleinopathies. Journal of Clinical Investigation, 2002, 110, 1429-1439.	8.2	292
148	Accumulation of Insoluble α-Synuclein in Human Lewy Body Diseases is Recapitulated in Transgenic Mice. Advances in Behavioral Biology, 2002, , 509-512.	0.2	0
149	Selective Insolubility of α-Synuclein in Human Lewy Body Diseases Is Recapitulated in a Transgenic Mouse Model. American Journal of Pathology, 2001, 159, 2215-2225.	3.8	235
150	Decreased CSF amyloid \hat{I}^2 42 and normal tau levels in dementia with Lewy bodies. Neurology, 2001, 56, 576-576.	1.1	30
151	Sensitivity to MPTP is not increased in Parkinson's diseaseâ€associated mutant αâ€synuclein transgenic mice. Journal of Neurochemistry, 2001, 77, 1181-1184.	3.9	125
152	Pick's disease associated with the novel <i>Tau</i> gene mutation K369I. Annals of Neurology, 2001, 50, 503-513.	5.3	128
153	Elevation of β-Amyloid Peptide 2–42 in Sporadic and Familial Alzheimer's Disease and Its Generation in PS1 Knockout Cells. Journal of Biological Chemistry, 2001, 276, 42645-42657.	3.4	115
154	Patients with Alzheimer's disease and dementia with Lewy bodies mistaken for Creutzfeldt-Jakob disease. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 71, 33-39.	1.9	133
155	A Pathogenic Presenilin-1 Deletion Causes Abberrant Al 2 42 Production in the Absence of Congophilic Amyloid Plaques. Journal of Biological Chemistry, 2001, 276, 7233-7239.	3.4	76
156	\hat{l}_{\pm} -Synuclein accumulation in a case of neurodegeneration with brain iron accumulation type 1 (NBIA-1,) Tj ETQq0 Acta Neuropathologica, 2000, 100, 568-574.	0 0 rgBT / 7.7	Overlock 10 80
157	Subcellular Localization of Wild-Type and Parkinson's Disease-Associated Mutant α-Synuclein in Human and Transgenic Mouse Brain. Journal of Neuroscience, 2000, 20, 6365-6373.	3.6	611
158	Decreased \hat{l}^2 -amyloid $\langle sub \rangle 1-42 \langle sub \rangle$ in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurology, 2000, 54, 1099-1102.	1.1	182
159	Physiology and Pathophysiology of αâ€Synuclein: Cell Culture and Transgenic Animal Models Based on a Parkinson's Diseaseâ€associated Protein. Annals of the New York Academy of Sciences, 2000, 920, 33-41.	3.8	98
160	Codon 178 mutation of the human prion protein gene in a German family (Backer family): sequencing data from 72-year-old celloidin-embedded brain tissue. Acta Neuropathologica, 1995, 89, 96-98.	7.7	41
161	Molecular cloning of a mink prion protein gene. Journal of General Virology, 1992, 73, 2757-2761.	2.9	16
162	Somal and Neuritic Accumulation of the Parkinson's Disease-Associated Mutant [A30P] \hat{l}_{\pm} -Synuclein in Transgenic Mice., 0,, 671-677.		0