Kamalan Jeevaratnam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5378538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Multiple Mini-Interview (MMI) for student selection in health professions training – A systematic review. Medical Teacher, 2013, 35, 1027-1041.	1.8	149
2	Quantum Biology: An Update and Perspective. Quantum Reports, 2021, 3, 80-126.	1.3	74
3	Cardiac Potassium Channels: Physiological Insights for Targeted Therapy. Journal of Cardiovascular Pharmacology and Therapeutics, 2018, 23, 119-129.	2.0	54
4	Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes. Pflugers Archiv European Journal of Physiology, 2017, 469, 629-641.	2.8	53
5	The pharmacological potential of <i>Phyllanthus niruri</i> . Journal of Pharmacy and Pharmacology, 2016, 68, 953-969.	2.4	52
6	Multiple targets for flecainide action: implications for cardiac arrhythmogenesis. British Journal of Pharmacology, 2018, 175, 1260-1278.	5.4	48
7	Loss of Nav1.5 expression and function in murine atria containing the RyR2-P2328S gain-of-function mutation. Cardiovascular Research, 2013, 99, 751-759.	3.8	47
8	Long COVID-19 and Postural Orthostatic Tachycardia Syndrome- Is Dysautonomia to Be Blamed?. Frontiers in Cardiovascular Medicine, 2022, 9, 860198.	2.4	47
9	Conduction Slowing Contributes to Spontaneous Ventricular Arrhythmias in Intrinsically Active Murine <i>RyR2â€P2328S</i> Hearts. Journal of Cardiovascular Electrophysiology, 2013, 24, 210-218.	1.7	43
10	Ageing, the autonomic nervous system and arrhythmia: From brain to heart. Ageing Research Reviews, 2018, 48, 40-50.	10.9	40
11	Acute atrial arrhythmogenicity and altered Ca2+ homeostasis in murine RyR2-P2328S hearts. Cardiovascular Research, 2011, 89, 794-804.	3.8	39
12	Delayed conduction and its implications in murine Scn5a+/â^' hearts: independent and interacting effects of genotype, age, and sex. Pflugers Archiv European Journal of Physiology, 2011, 461, 29-44.	2.8	35
13	Sodium channel haploinsufficiency and structural change in ventricular arrhythmogenesis. Acta Physiologica, 2016, 216, 186-202.	3.8	34
14	Territory-wide cohort study of Brugada syndrome in Hong Kong: predictors of long-term outcomes using random survival forests and non-negative matrix factorisation. Open Heart, 2021, 8, e001505.	2.3	33
15	The RyR2-P2328S mutation downregulates Nav1.5 producing arrhythmic substrate in murine ventricles. Pflugers Archiv European Journal of Physiology, 2016, 468, 655-665.	2.8	31
16	Frequency distribution analysis of activation times and regional fibrosis in murine Scn5a hearts: The effects of ageing and sex. Mechanisms of Ageing and Development, 2012, 133, 591-599.	4.6	30
17	Comparison of Sodium-Glucose Cotransporter-2 Inhibitor and Dipeptidyl Peptidase-4 Inhibitor on the Risks of New-Onset Atrial Fibrillation, Stroke and Mortality in Diabetic Patients: A Propensity Score-Matched Study in Hong Kong. Cardiovascular Drugs and Therapy, 2023, 37, 561-569.	2.6	28
18	Predictive scores for identifying patients with type 2 diabetes mellitus at risk of acute myocardial infarction and sudden cardiac death. Endocrinology, Diabetes and Metabolism, 2021, 4, e00240.	2.4	27

#	Article	IF	CITATIONS
19	Chloroquine and hydroxychloroquine for COVID-19: implications for cardiac safety. European Heart Journal - Cardiovascular Pharmacotherapy, 2020, 6, 256-257.	3.0	24
20	Atrial arrhythmogenicity in aged Scn5a+/â^†KPQ mice modeling long QT type 3 syndrome and its relationship to Na+ channel expression and cardiac conduction. Pflugers Archiv European Journal of Physiology, 2010, 460, 593-601.	2.8	23
21	Territory-Wide Chinese Cohort of Long QT Syndrome: Random Survival Forest and Cox Analyses. Frontiers in Cardiovascular Medicine, 2021, 8, 608592.	2.4	23
22	Differences in sinoâ€atrial and atrioâ€ventricular function with age and sex attributable to the <i>Scn5a</i> ^{<i>+/â°'</i>} mutation in a murine cardiac model. Acta Physiologica, 2010, 200, 23-33.	3.8	22
23	Arrhythmic substrate, slowed propagation and increased dispersion in conduction direction in the right ventricular outflow tract of murine Scn5a+/ â° hearts. Acta Physiologica, 2014, 211, 559-573.	3.8	21
24	Age-dependent atrial arrhythmic phenotype secondary to mitochondrial dysfunction in Pgc-1β deficient murine hearts. Mechanisms of Ageing and Development, 2017, 167, 30-45.	4.6	21
25	Student preparedness characteristics important for clinical learning: perspectives of supervisors from medicine, pharmacy and nursing. BMC Medical Education, 2017, 17, 130.	2.4	21
26	Epacâ€induced ryanodine receptor type 2 activation inhibits sodium currents in atrial and ventricular murine cardiomyocytes. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 278-292.	1.9	21
27	Derivation of an electronic frailty index for predicting shortâ€ŧerm mortality in heart failure: a machine learning approach. ESC Heart Failure, 2021, 8, 2837-2845.	3.1	21
28	Circulating microRNA as a Biomarker for Coronary Artery Disease. Biomolecules, 2020, 10, 1354.	4.0	20
29	Risk stratification of cardiac arrhythmias and sudden cardiac death in type 2 diabetes mellitus patients receiving insulin therapy: A populationâ€based cohort study. Clinical Cardiology, 2021, 44, 1602-1612.	1.8	20
30	Effects of electromagnetic fields on neuronal ion channels: a systematic review. Annals of the New York Academy of Sciences, 2021, 1499, 82-103.	3.8	19
31	Veterinary Education during Covid-19 and Beyond—Challenges and Mitigating Approaches. Animals, 2021, 11, 1818.	2.3	19
32	Paediatric/young versus adult patients with long QT syndrome. Open Heart, 2021, 8, e001671.	2.3	19
33	Arrhythmic effects of Epacâ€mediated ryanodine receptor activation in Langendorffâ€perfused murine hearts are associated with reduced conduction velocity. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 686-692.	1.9	18
34	Chloroquine, hydroxychloroquine, and COVID-19: Systematic review and narrative synthesis of efficacy and safety. Saudi Pharmaceutical Journal, 2020, 28, 1760-1776.	2.7	18
35	Development of a predictive risk model for all-cause mortality in patients with diabetes in Hong Kong. BMJ Open Diabetes Research and Care, 2021, 9, e001950.	2.8	17
36	Personal domains assessed in multiple mini interviews (MMIs) for healthcare student selection: A narrative synthesis systematic review. Nurse Education Today, 2018, 64, 56-64.	3.3	15

Kamalan Jeevaratnam

#	Article	IF	CITATIONS
37	Arrhythmogenic mechanisms of obstructive sleep apnea in heart failure patients. Sleep, 2018, 41, .	1.1	14
38	The cardiac CaMKII-Nav1.5 relationship: From physiology to pathology. Journal of Molecular and Cellular Cardiology, 2020, 139, 190-200.	1.9	14
39	Arrhythmogenic Mechanisms in Hypokalaemia: Insights From Pre-clinical Models. Frontiers in Cardiovascular Medicine, 2021, 8, 620539.	2.4	14
40	Ion channels, long <scp>QT</scp> syndrome and arrhythmogenesis inÂageing. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 38-45.	1.9	13
41	Proâ€arrhythmic atrial phenotypes in incrementally paced murine <i>Pgc1β</i> ^{â^'/â^'} hearts: effects of age. Experimental Physiology, 2017, 102, 1619-1634.	2.0	13
42	Ventricular pro-arrhythmic phenotype, arrhythmic substrate, ageing and mitochondrial dysfunction in peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β) murine hearts. Mechanisms of Ageing and Development, 2018, 173, 92-103.	4.6	13
43	To what extent do preclinical veterinary students in the UK utilize online resources to study physiology. American Journal of Physiology - Advances in Physiology Education, 2021, 45, 160-171.	1.6	13
44	The Ageâ€dependence of atrial arrhythmogenicity in <scp><i>Scn5a</i></scp> ^{+/â^'} murine hearts reflects alterations in action potential propagation and recovery. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 518-527.	1.9	12
45	Cardiomyocyte ionic currents in intact young and aged murine Pgc-1β atrial preparations. Mechanisms of Ageing and Development, 2018, 169, 1-9.	4.6	12
46	Ageâ€dependent electrocardiographic changes in Pgcâ€1β deficient murine hearts. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 174-186.	1.9	12
47	Is the sigma-1 receptor a potential pharmacological target for cardiac pathologies? A systematic review. IJC Heart and Vasculature, 2020, 26, 100449.	1.1	12
48	Targeting the βâ€adrenergic receptor in the clinical management of congenital long QT syndrome. Annals of the New York Academy of Sciences, 2020, 1474, 27-46.	3.8	12
49	Update on antiarrhythmic drug pharmacology. Journal of Cardiovascular Electrophysiology, 2020, 31, 579-592.	1.7	12
50	The effects of ageing and adrenergic challenge on electrocardiographic phenotypes in a murine model of long QT syndrome type 3. Scientific Reports, 2017, 7, 11070.	3.3	11
51	Effects of ageing on pro-arrhythmic ventricular phenotypes in incrementally paced murine Pgc-1β â^'/â^' hearts. Pflugers Archiv European Journal of Physiology, 2017, 469, 1579-1590.	2.8	11
52	Bisphosphonates and atrial fibrillation: revisiting the controversy. Annals of the New York Academy of Sciences, 2020, 1474, 15-26.	3.8	11
53	Carbon Nanotube-Based Scaffolds for Cardiac Tissue Engineering—Systematic Review and Narrative Synthesis. Bioengineering, 2021, 8, 80.	3.5	11
54	Reduced cardiomyocyte Na ⁺ current in the ageâ€dependent murine <i>Pgcâ€1β</i> ^{<i>â^'/â^'</i>} model of ventricular arrhythmia. Journal of Cellular Physiology, 2019, 234, 3921-3932.	4.1	10

#	Article	IF	CITATIONS
55	Protein expression profiles in murine ventricles modeling catecholaminergic polymorphic ventricular tachycardia: effects of genotype and sex. Annals of the New York Academy of Sciences, 2020, 1478, 63-74.	3.8	10
56	The complexity of clinically-normal sinus-rhythm ECGs is decreased in equine athletes with a diagnosis of paroxysmal atrial fibrillation. Scientific Reports, 2020, 10, 6822.	3.3	10
57	Molecular basis of arrhythmic substrate in ageing murine peroxisome proliferator-activated receptor \hat{I}^3 co-activator deficient hearts modelling mitochondrial dysfunction. Bioscience Reports, 2019, 39, .	2.4	10
58	ECG Restitution Analysis and Machine Learning to Detect Paroxysmal Atrial Fibrillation: Insight from the Equine Athlete as a Model for Human Athletes. Function, 2020, 2, zqaa031.	2.3	10
59	Sodium current inhibition following stimulation of exchange protein directly activated by cyclic-3′,5′-adenosine monophosphate (Epac) in murine skeletal muscle. Scientific Reports, 2019, 9, 1927.	3.3	9
60	Fragmented QRS Is Independently Predictive of Long-Term Adverse Clinical Outcomes in Asian Patients Hospitalized for Heart Failure: A Retrospective Cohort Study. Frontiers in Cardiovascular Medicine, 2021, 8, 738417.	2.4	9
61	Cardiac electrophysiological adaptations in the equine athlete—Restitution analysis of electrocardiographic features. PLoS ONE, 2018, 13, e0194008.	2.5	8
62	Association of antimicrobial resistance and gut microbiota composition in human and non-human primates at an urban ecotourism site. Gut Pathogens, 2020, 12, 14.	3.4	8
63	Regulatory actions of 3′,5′â€cyclic adenosine monophosphate on osteoclast function: possible roles of Epacâ€mediated signaling. Annals of the New York Academy of Sciences, 2018, 1433, 18-28.	3.8	7
64	Thapsigargin blocks electromagnetic fieldâ€elicited intracellular Ca ²⁺ increase in HEK 293 cells. Physiological Reports, 2022, 10, e15189.	1.7	7
65	The application of Lempel-Ziv and Titchener complexity analysis for equine telemetric electrocardiographic recordings. Scientific Reports, 2019, 9, 2619.	3.3	6
66	Computational approaches for detection of cardiac rhythm abnormalities: Are we there yet?. Journal of Electrocardiology, 2020, 59, 28-34.	0.9	6
67	Student perspectives of preparedness characteristics for clinical learning within a fully distributed veterinary teaching model. PLoS ONE, 2021, 16, e0249669.	2.5	6
68	Altered reâ€excitation thresholds and conduction of extrasystolic action potentials contribute to arrhythmogenicity in murine models of long <scp>QT</scp> syndrome. Acta Physiologica, 2012, 206, 164-177.	3.8	5
69	Antibiotic profiling of Methicillin Resistant Staphylococcus aureus (MRSA) isolates in stray canines and felines. Cogent Biology, 2017, 3, 1412280.	1.7	5
70	Ageing in <i>Pgc-1βâ^'/â^'</i> mice modelling mitochondrial dysfunction induces differential expression of a range of genes regulating ventricular electrophysiology. Bioscience Reports, 2019, 39, .	2.4	5
71	Symmetric Projection Attractor Reconstruction analysis of murine electrocardiograms: Retrospective prediction of Scn5a+/- genetic mutation attributable to Brugada syndrome. Heart Rhythm O2, 2020, 1, 368-375.	1.7	5
72	Detecting paroxysmal atrial fibrillation from normal sinus rhythm in equine athletes using Symmetric Projection Attractor Reconstruction and machine learning. Cardiovascular Digital Health Journal, 2022, 3, 96-106.	1.3	5

#	Article	IF	CITATIONS
73	Periodic assessment of plasma sFlt-1 and PIGF concentrations and its association with placental morphometry in gestational hypertension (GH) - a prospective follow-up study. BMC Pregnancy and Childbirth, 2010, 10, 58.	2.4	4
74	Gene and Protein Expression Profile of Selected Molecular Targets Mediating Electrophysiological Function in Pgc-1α Deficient Murine Atria. International Journal of Molecular Sciences, 2018, 19, 3450.	4.1	4
75	Deep Learning Applied to Attractor Images Derived from ECG Signals for Detection of Genetic Mutation. , 0, , .		4
76	Systematic review of renal denervation for the management of cardiac arrhythmias. Clinical Research in Cardiology, 2022, 111, 971-993.	3.3	4
77	Atrial Transcriptional Profiles of Molecular Targets Mediating Electrophysiological Function in Aging and Pgc-1Î ² Deficient Murine Hearts. Frontiers in Physiology, 2019, 10, 497.	2.8	3
78	Molecular basis of ventricular arrhythmogenicity in a Pgc-1α deficient murine model. Molecular Genetics and Metabolism Reports, 2021, 27, 100753.	1.1	3
79	Fundamentals of arrhythmogenic mechanisms and treatment strategies for equine atrial fibrillation. Equine Veterinary Journal, 2022, 54, 262-282.	1.7	3
80	Using Learning Theories to Develop a Veterinary Student Preparedness Toolkit for Workplace Clinical Training. Frontiers in Veterinary Science, 2022, 9, 833034.	2.2	3
81	Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis. Annals of the New York Academy of Sciences, 2022, 1515, 105-119.	3.8	3
82	Spontaneous cerebrospinal fluid rhinorrhoea and its association with body mass index (BMI). Bangladesh Journal of Medical Science, 2019, 18, 322-328.	0.2	2
83	Restitution metrics in Brugada syndrome: a systematic review and meta-analysis. Journal of Interventional Cardiac Electrophysiology, 2020, 57, 319-327.	1.3	2
84	Transcriptional profiles of genes related to electrophysiological function in <i>Scn5a</i> ^{+/â^²} murine hearts. Physiological Reports, 2021, 9, e15043.	1.7	2
85	Response to: Depolarization vs. repolarization: what is the mechanism of ventricular arrhythmogenesis underlying sodium channel haploinsufficiency in mouse hearts?. Acta Physiologica, 2016, 218, 236-238.	3.8	1
86	Use of Online Resources to Study Cardiology by Clinical Veterinary Students in the United Kingdom. Journal of Veterinary Medical Education, 2021, , e20200075.	0.6	1
87	Editorial: Risk Stratification Strategies for Cardiac Rhythm Abnormalities. Frontiers in Cardiovascular Medicine, 2022, 9, 887461.	2.4	1
88	A remote mentorship model for empowering students to undertake electrocardiology research: Effects on gender equity. Journal of Electrocardiology, 2022, 72, 128-130.	0.9	1
89	Reply to: "Technology should work for the educatorsâ€: American Journal of Physiology - Advances in Physiology Education, 2021, 45, 466-466.	1.6	0