Thomas Vaccari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5378197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Snapshots from within the cell: Novel trafficking and non trafficking functions of Snap29 during tissue morphogenesis. Seminars in Cell and Developmental Biology, 2023, 133, 42-52.	5.0	5
2	Pathogenic variants of Valosin ontaining protein induce lysosomal damage and transcriptional activation of autophagy regulators in neuronal cells. Neuropathology and Applied Neurobiology, 2022, 48, e12818.	3.2	5
3	Automatic imaging of <i>Drosophila</i> embryos with light sheet fluorescence microscopy on chip. Journal of Biophotonics, 2021, 14, e202000396.	2.3	16
4	Activity of the SNARE Protein SNAP29 at the Endoplasmic Reticulum and Golgi Apparatus. Frontiers in Cell and Developmental Biology, 2021, 9, 637565.	3.7	17
5	Insights into the Role of the Microbiota and of Short-Chain Fatty Acids in Rubinstein–Taybi Syndrome. International Journal of Molecular Sciences, 2021, 22, 3621.	4.1	4
6	V-ATPase controls tumor growth and autophagy in a Drosophila model of gliomagenesis. Autophagy, 2021, 17, 4442-4452.	9.1	6
7	Hecw controls oogenesis and neuronal homeostasis by promoting the liquid state of ribonucleoprotein particles. Nature Communications, 2021, 12, 5488.	12.8	7
8	Synaptic stimulation protects against pathological tau by enhancing lysosomal degradation. Alzheimer's and Dementia, 2020, 16, e040308.	0.8	0
9	Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation. ELife, 2020, 9, .	6.0	30
10	Dual-color on-chip light sheet microscopy of drosophila embryos. , 2020, , .		1
11	The Cornelia de Lange Syndrome-associated factor NIPBL interacts with BRD4 ET domain for transcription control of a common set of genes. Cell Death and Disease, 2019, 10, 548.	6.3	35
12	Modulating eIF6 levels unveils the role of translation in ecdysone biosynthesis during Drosophila development. Developmental Biology, 2019, 455, 100-111.	2.0	6
13	Genetic and Cell Biology Methods to Study ESCRTs in Drosophila melanogaster. Methods in Molecular Biology, 2019, 1998, 13-29.	0.9	0
14	Dual-Color Fluorescent Microscope on Chip for 3D Imaging of Single Cells. , 2019, , .		0
15	A genetic model of CEDNIK syndrome in zebrafish highlights the role of the SNARE protein Snap29 in neuromotor and epidermal development. Scientific Reports, 2019, 9, 1211.	3.3	19
16	Specific V-ATPase expression sub-classifies IDHwt lower-grade gliomas and impacts glioma growth in vivo. EBioMedicine, 2019, 41, 214-224.	6.1	22
17	A GBM-like V-ATPase signature directs cell-cell tumor signaling and reprogramming via large oncosomes. EBioMedicine, 2019, 41, 225-235.	6.1	25
18	Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy, 2019, 15, 631-651.	9.1	256

THOMAS VACCARI

#	Article	IF	CITATIONS
19	Synaptic activity protects against AD and FTD-like pathology via autophagic-lysosomal degradation. Molecular Psychiatry, 2018, 23, 1530-1540.	7.9	39
20	ESCRT genes and regulation of developmental signaling. Seminars in Cell and Developmental Biology, 2018, 74, 29-39.	5.0	16
21	Mechanisms of Non-canonical Signaling in Health and Disease: Diversity to Take Therapy up a Notch?. Advances in Experimental Medicine and Biology, 2018, 1066, 187-204.	1.6	12
22	How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell Stress, 2018, 2, 72-81.	3.2	21
23	Early autophagosomes are formed from myelin-like structures derived from outer membranes of mitochondria. Ultrastructural Pathology, 2017, 41, 73-74.	0.9	3
24	An essential step of kinetochore formation controlled by the SNARE protein Snap29. EMBO Journal, 2016, 35, 2223-2237.	7.8	19
25	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
26	Control of lysosomal biogenesis and Notch-dependent tissue patterning by components of the TFEB-V-ATPase axis in <i>Drosophila melanogaster</i> . Autophagy, 2016, 12, 499-514.	9.1	34
27	When membranes need an ESCRT: endosomal sorting and membrane remodelling in health and disease. Swiss Medical Weekly, 2016, 146, w14347.	1.6	22
28	The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget, 2015, 6, 17514-17531.	1.8	60
29	ESCRT-0 Is Not Required for Ectopic Notch Activation and Tumor Suppression in Drosophila. PLoS ONE, 2014, 9, e93987.	2.5	20
30	Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in <i>Drosophila</i> . Autophagy, 2014, 10, 2251-2268.	9.1	72
31	ESCRT-II/Vps25 Constrains Digit Number by Endosome-Mediated Selective Modulation of FGF-SHH Signaling. Cell Reports, 2014, 9, 674-687.	6.4	12
32	Proteomics Meets Genetics: SILAC Labeling of Drosophila melanogaster Larvae and Cells for In Vivo Functional Studies. Methods in Molecular Biology, 2014, 1188, 293-311.	0.9	4
33	Pharmacologic inhibition of vacuolar H+ ATPase reduces physiologic and oncogenic Notch signaling. Molecular Oncology, 2014, 8, 207-220.	4.6	66
34	Immunohistochemical Tools and Techniques to Visualize Notch in Drosophila melanogaster. Methods in Molecular Biology, 2014, 1187, 63-78.	0.9	1
35	Elevated expression of the V-ATPase C subunit triggers JNK-dependent cell invasion and overgrowth in a <i>Drosophila</i> epithelium. DMM Disease Models and Mechanisms, 2013, 6, 689-700.	2.4	44
36	Activation of the proton pump, V-ATPase, triggers JNK-dependent cell invasion and overgrowth in a <i>Drosophila</i> epithelium. Development (Cambridge), 2013, 140, e507-e507.	2.5	0

THOMAS VACCARI

#	Article	IF	CITATIONS
37	Alarming shift away from sharing results. Nature, 2012, 488, 157-157.	27.8	2
38	Shaping development with ESCRTs. Nature Cell Biology, 2012, 14, 38-45.	10.3	111
39	The vacuolar ATPase is required for physiological as well as pathological activation of the Notch receptor. Development (Cambridge), 2010, 137, 1825-1832.	2.5	145
40	Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in <i>Drosophila</i> by efficient isolation of ESCRT mutants. Journal of Cell Science, 2009, 122, 2413-2423.	2.0	136
41	A tumor suppressor activity of Drosophila Polycomb genes mediated by JAK-STAT signaling. Nature Genetics, 2009, 41, 1150-1155.	21.4	127
42	At the crossroads of polarity, proliferation and apoptosis: The use of Drosophila to unravel the multifaceted role of endocytosis in tumor suppression. Molecular Oncology, 2009, 3, 354-365.	4.6	42
43	Endosomal entry regulates Notch receptor activation in <i>Drosophila melanogaster </i> . Journal of Cell Biology, 2008, 180, 755-762.	5.2	238
44	A Mosaic Genetic Screen for Drosophila Neoplastic Tumor Suppressor Genes Based on Defective Pupation. Genetics, 2007, 177, 1667-1677.	2.9	68
45	ESCRTs and Fab1 Regulate Distinct Steps of Autophagy. Current Biology, 2007, 17, 1817-1825.	3.9	292
46	The Drosophila PAR-1 Spacer Domain Is Required for Lateral Membrane Association and for Polarization of Follicular Epithelial Cells. Current Biology, 2005, 15, 255-261.	3.9	40
47	The Drosophila Tumor Suppressor vps25 Prevents Nonautonomous Overproliferation by Regulating Notch Trafficking. Developmental Cell, 2005, 9, 687-698.	7.0	330
48	The Fusome and Microtubules Enrich Par-1 in the Oocyte, Where It Effects Polarization in Conjunction with Par-3, BicD, Egl, and Dynein. Current Biology, 2002, 12, 1524-1528.	3.9	54
49	Hyperpolarization-activated Cyclic Nucleotide-gated Channel 1 Is a Molecular Determinant of the Cardiac Pacemaker Current I f. Journal of Biological Chemistry, 2001, 276, 29233-29241.	3.4	95
50	Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood, 2000, 95, 3900-3908.	1.4	124
51	The human gene coding for HCN2, a pacemaker channel of the heart. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 419-425.	2.4	68
52	Hmg4,a New Member of theHmg1/2Gene Family. Genomics, 1998, 49, 247-252.	2.9	87