
Gonzalo Rubio Calzado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5378081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparisons of p-adaptation strategies based on truncation- and discretisation-errors for high order discontinuous Galerkin methods. Computers and Fluids, 2016, 139, 36-46.	2.5	35
2	Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation. Journal of Computational Physics, 2016, 306, 216-236.	3.8	33
3	Improving the stability of multiple-relaxation lattice Boltzmann methods with central moments. Computers and Fluids, 2018, 172, 397-409.	2.5	33
4	Design of a Smagorinsky spectral Vanishing Viscosity turbulence model for discontinuous Galerkin methods. Computers and Fluids, 2020, 200, 104440.	2.5	30
5	A p-multigrid strategy with anisotropic p-adaptation based on truncation errors for high-order discontinuous Galerkin methods. Journal of Computational Physics, 2019, 378, 209-233.	3.8	28
6	Dispersion-Dissipation Analysis for Advection Problems with Nonconstant Coefficients: Applications to Discontinuous Galerkin Formulations. SIAM Journal of Scientific Computing, 2018, 40, A747-A768.	2.8	24
7	Upwind methods for the Baer–Nunziato equations and higher-order reconstruction using artificial viscosity. Journal of Computational Physics, 2016, 326, 805-827.	3.8	22
8	Sensitivity analysis to unsteady perturbations of complex flows: a discrete approach. International Journal for Numerical Methods in Fluids, 2014, 76, 1088-1110.	1.6	19
9	The Bassi Rebay 1 scheme is a special case of the Symmetric Interior Penalty formulation for discontinuous Galerkin discretisations with Gauss–Lobatto points. Journal of Computational Physics, 2018, 363, 1-10.	3.8	19
10	Insights on Aliasing Driven Instabilities for Advection Equations with Application to Gauss–Lobatto Discontinuous Galerkin Methods. Journal of Scientific Computing, 2018, 75, 1262-1281.	2.3	19
11	A free–energy stable nodal discontinuous Galerkin approximation with summation–by–parts property for the Cahn–Hilliard equation. Journal of Computational Physics, 2020, 403, 109072.	3.8	16
12	Entropy–stable discontinuous Galerkin approximation with summation–by–parts property for the incompressible Navier–Stokes/Cahn–Hilliard system. Journal of Computational Physics, 2020, 408, 109363.	3.8	15
13	An entropy–stable discontinuous Galerkin approximation for the incompressible Navier–Stokes equations with variable density and artificial compressibility. Journal of Computational Physics, 2020, 408, 109241.	3.8	13
14	Truncation Error Estimation in the p-Anisotropic Discontinuous Galerkin Spectral Element Method. Journal of Scientific Computing, 2019, 78, 433-466.	2.3	12
15	The Estimation of Truncation Error by \$\$au \$\$ -Estimation for Chebyshev Spectral Collocation Method. Journal of Scientific Computing, 2013, 57, 146-173.	2.3	10
16	On the efficiency of the IMPES method for two phase flow problems in porous media. Journal of Petroleum Science and Engineering, 2018, 164, 427-436.	4.2	9
17	Quasi-a priori truncation error estimation and higher order extrapolation for non-linear partial differential equations. Journal of Computational Physics, 2013, 253, 389-404.	3.8	8
18	Mathematical modeling of nitrogen-pressurized Halon flow in fire extinguishing systems. Fire Safety Journal, 2021, 122, 103356.	3.1	8

Gonzalo Rubio Calzado

#	Article	IF	CITATIONS
19	Quasi-a priori mesh adaptation and extrapolation to higher order using Ï"-estimation. Aerospace Science and Technology, 2014, 38, 76-87.	4.8	7
20	Quasi-A Priori Truncation Error Estimation in the DGSEM. Journal of Scientific Computing, 2015, 64, 425-455.	2.3	7
21	A free–energy stable p–adaptive nodal discontinuous Galerkin for the Cahn–Hilliard equation. Journal of Computational Physics, 2021, 442, 110409.	3.8	6
22	Advantages of static condensation in implicit compressible Navier–Stokes DGSEM solvers. Computers and Fluids, 2020, 209, 104646.	2.5	5
23	A statically condensed discontinuous Galerkin spectral element method on Gauss-Lobatto nodes for the compressible Navier-Stokes equations. Journal of Computational Physics, 2021, 426, 109953.	3.8	5
24	A functional oriented truncation error adaptation method. Journal of Computational Physics, 2022, 451, 110883.	3.8	4
25	An entropy–stable p–adaptive nodal discontinuous Galerkin for the coupled Navier–Stokes/Cahn–Hilliard system. Journal of Computational Physics, 2022, 458, 111093.	3.8	3
26	A discontinuous Galerkin approximation for a wall–bounded consistent three–component Cahn–Hilliard flow model. Computers and Fluids, 2021, 225, 104971.	2.5	2
27	Study of Bubble Growth in a Multicomponent Mixture at High Pressure. , 0, , .		2
28	Implicit Large Eddy Simulations for NACA0012 Airfoils Using Compressible and Incompressible Discontinuous Galerkin Solvers. Lecture Notes in Computational Science and Engineering, 2020, , 477-487.	0.3	2
29	CFD–based erosion and corrosion modeling in pipelines using a high–order discontinuous Galerkin multiphase solver. Wear, 2021, 478-479, 203882.	3.1	1
30	Multi-physics methodology for phase change due to rapidly depressurised two-phase flows. International Journal of Multiphase Flow, 2021, 144, 103788.	3.4	1
31	Artificial Viscosity Discontinuous Galerkin Spectral Element Method for the Baer-Nunziato Equations. Lecture Notes in Computational Science and Engineering, 2017, , 613-625.	0.3	0
32	An Anisotropic p-Adaptation Multigrid Scheme for Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, 2020, , 549-560.	0.3	0
33	High–order discontinuous Galerkin approximation for a three–phase incompressible Navier–Stokes/Cahn–Hilliard model. Computers and Fluids, 2022, , 105545.	2.5	0