Judith M Burkart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5377111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How Reliance on Allomaternal Care Shapes Primate Development with Special Reference to the Genus Homo. Evolutionary Psychology, 2022, , 161-188.	1.8	22
2	After short interbirth intervals, captive callitrichine monkeys have higher infant mortality. IScience, 2022, 25, 103724.	4.1	4
3	No evidence for general intelligence in a fish. Ethology, 2022, 128, 424-436.	1.1	6
4	Primate origins of corepresentation and cooperative flexibility: A comparative study with common marmosets (Callithrix jacchus), brown capuchins (Sapajus apella), and Tonkean macaques (Macaca) Tj ETQq0 0 () rgB3 /Ov	erl ø ck 10 Tf 5
5	Individual differences in co-representation in three monkey species (Callithrix jacchus, Sapajus apella) Tj ETQq1 1	0.784314	+ rgBT /Overlo

	Animal Cognition, 2022, 25, 1399-1415.		
6	Cooperative Breeding. , 2022, , 1695-1700.		1
7	Intentional communication: solving methodological issues to assigning firstâ€order intentional signalling. Biological Reviews, 2021, 96, 903-921.	10.4	11
8	Do marmosets understand othersâ \in ^M conversations? A thermography approach. Science Advances, 2021, 7, .	10.3	13
9	Reply to comment on "Nonadjacent dependency processing in monkeys, apes, and humans― Science Advances, 2021, 7, .	10.3	0
10	Trade-offs between vocal accommodation and individual recognisability in common marmoset vocalizations. Scientific Reports, 2021, 11, 15683.	3.3	12
11	Monkey see, monkey feel? Marmoset reactions towards conspecifics' arousal. Royal Society Open Science, 2021, 8, 211255.	2.4	2
12	Nonadjacent dependency processing in monkeys, apes, and humans. Science Advances, 2020, 6, .	10.3	25
13	The emergence of emotionally modern humans: implications for language and learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190499.	4.0	62
14	Validity of Cognitive Tests for Non-human Animals: Pitfalls and Prospects. Frontiers in Psychology, 2020, 11, 1835.	2.1	25
15	Marmoset prosociality is intentional. Animal Cognition, 2020, 23, 581-594.	1.8	28
16	Personality method validation in common marmosets (Callithrix jacchus): Getting the best of both worlds Journal of Comparative Psychology (Washington, D C: 1983), 2020, 134, 52-70.	0.5	12
17	From sharing food to sharing information. Contemporary Discourses of Hate and Radicalism Across Space and Genres, 2020, , 136-150.	0.0	0
18	A comparative study of litter size and sex composition in a large dataset of callitrichine monkeys. American Journal of Primatology, 2019, 81, e23038.	1.7	9

Judith M Burkart

#	Article	IF	CITATIONS
19	Are dialects socially learned in marmoset monkeys? Evidence from translocation experiments. PLoS ONE, 2019, 14, e0222486.	2.5	22
20	Does opportunistic testing bias cognitive performance in primates? Learning from drop-outs. PLoS ONE, 2019, 14, e0213727.	2.5	7
21	The use of infrared thermography to investigate emotions in common marmosets. Physiology and Behavior, 2019, 211, 112672.	2.1	20
22	Allomaternal care, brains and fertility in mammals: who cares matters. Behavioral Ecology and Sociobiology, 2019, 73, 1.	1.4	20
23	General cognitive abilities in orangutans (Pongo abelii and Pongo pygmaeus). Intelligence, 2019, 74, 3-11.	3.0	19
24	Food sharing patterns in three species of callitrichid monkeys (Callithrix jacchus, Leontopithecus) Tj ETQq0 0 0 rg (Washington, D C: 1983), 2019, 133, 474-487.	BT /Overlo 0.5	ock 10 Tf 50 24
25	Cooperative Breeding. , 2019, , 1-6.		1
26	Corepresentation During Joint Action in Marmoset Monkeys (<i>Callithrix jacchus</i>). Psychological Science, 2018, 29, 984-995.	3.3	29
27	Reverse audience effects on helping in cooperatively breeding marmoset monkeys. Biology Letters, 2018, 14, 20180030.	2.3	15
28	The function and mechanism of vocal accommodation in humans and other primates. Biological Reviews, 2018, 93, 996-1013.	10.4	44
29	Evolutionary Origins of Morality: Insights From Non-human Primates. Frontiers in Sociology, 2018, 3, .	2.0	23
30	Why help? Relationship quality, not strategic grooming predicts infant-care in group-living marmosets. Physiology and Behavior, 2018, 193, 108-116.	2.1	14
31	The moral capacity as a biological adaptation: A commentary on Tomasello. Philosophical Psychology, 2018, 31, 703-721.	0.9	0
32	From sharing food to sharing information. Interaction Studies, 2018, 19, 136-150.	0.6	27
33	The comparative neuroprimatology 2018 (CNP-2018) road map for research on <i>How the Brain Got Language</i> . Interaction Studies, 2018, 19, 370-387.	0.6	7
34	Long-term-stability of relationship structure in family groups of common marmosets, and its link to proactive prosociality. Physiology and Behavior, 2017, 173, 79-86.	2.1	17
35	Orientation toward humans predicts cognitive performance in orang-utans. Scientific Reports, 2017, 7, 40052.	3.3	40
36	Evidence for Dialects in Three Captive Populations of Common Marmosets (Callithrix jacchus). International Journal of Primatology, 2017, 38, 780-793.	1.9	20

JUDITH M BURKART

#	Article	IF	CITATIONS
37	Future directions for studying the evolution of general intelligence. Behavioral and Brain Sciences, 2017, 40, e224.	0.7	11
38	Looking for unity in diversity: human cooperative childcare in comparative perspective. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171184.	2.6	22
39	Exorcising <scp>G</scp> rice's ghost: an empirical approach to studying intentional communication in animals. Biological Reviews, 2017, 92, 1427-1433.	10.4	152
40	The evolution of general intelligence. Behavioral and Brain Sciences, 2017, 40, e195.	0.7	118
41	Evolution and consequences of sociality , 2017, , 257-271.		5
42	Common marmoset (Callithrix jacchus) personality Journal of Comparative Psychology (Washington,) Tj ETQq0	0 8.fgBT /	Overlock 10
43	Revisiting the consequences of cooperative breeding. Journal of Zoology, 2016, 299, 77-83.	1.7	35
44	Manipulation complexity in primates coevolved with brain size and terrestriality. Scientific Reports, 2016, 6, 24528.	3.3	76
45	The cooperative breeding perspective helps in pinning down when uniquely human evolutionary processes are necessary. Behavioral and Brain Sciences, 2016, 39, e34.	0.7	2

46	The Ecology of Social Learning in Animals and its Link with Intelligence. Spanish Journal of Psychology, 2016, 19, E99.	2.1	7
47	How task format affects cognitive performance: a memory test with two species of New World monkeys. Animal Behaviour, 2016, 121, 33-39.	1.9	44
48	Oxytocin is associated with infant-care behavior and motivation in cooperatively breeding marmoset monkeys. Hormones and Behavior, 2016, 80, 10-18.	2.1	71
49	The reluctant innovator: orangutans and the phylogeny of creativity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150183.	4.0	51
50	Common marmosets show social plasticity and group-level similarity in personality. Scientific Reports, 2015, 5, 8878.	3.3	70
51	Opposite effects of male and female helpers on social tolerance and proactive prosociality in callitrichid family groups. Scientific Reports, 2015, 5, 9622.	3.3	19
52	High emotional reactivity toward an experimenter affects participation, but not performance, in cognitive tests with common marmosets (Callithrix jacchus). Animal Cognition, 2015, 18, 701-712.	1.8	25
53	Strongly bonded family members in common marmosets show synchronized fluctuations in oxytocin. Physiology and Behavior, 2015, 151, 246-251.	2.1	47
54	Chimpanzees' Bystander Reactions to Infanticide. Human Nature, 2015, 26, 143-160.	1.6	26

Chimpanzees' Bystander Reactions to Infanticide. Human Nature, 2015, 26, 143-160. 54

JUDITH M BURKART

#	Article	IF	CITATIONS
55	Marmosets as model species in neuroscience and evolutionary anthropology. Neuroscience Research, 2015, 93, 8-19.	1.9	39
56	Primate energy expenditure and life history. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1433-1437.	7.1	124
57	The evolution of self-control. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2140-8.	7.1	602
58	The evolutionary origin of human hyper-cooperation. Nature Communications, 2014, 5, 4747.	12.8	250
59	Morality as a Biological Adaptation – An Evolutionary Model Based on the Lifestyle of Human Foragers. Library of Ethics and Applied Philosophy, 2014, , 65-84.	0.2	5
60	Do robots have goals? How agent cues influence action understanding in non-human primates. Behavioural Brain Research, 2013, 246, 47-54.	2.2	23
61	Bonobos, Pan paniscus, chimpanzees, Pan troglodytes, and marmosets, Callithrix jacchus, prefer to feed alone. Animal Behaviour, 2013, 85, 51-60.	1.9	29
62	Group service in macaques (Macaca fuscata), capuchins (Cebus apella) and marmosets (Callithrix) Tj ETQqO 0 0 Comparative Psychology (Washington, D C: 1983), 2013, 127, 212-225.	rgBT /Ove 0.5	rlock 10 Tf 50 68
63	Preschool Children Fail Primate Prosocial Game Because of Attentional Task Demands. PLoS ONE, 2013, 8, e68440.	2.5	35
64	Even simple forms of social learning rely on intention attribution in marmoset monkeys (Callithrix) Tj ETQq0 0 0	rgBT /Ove 0.5	rlock 10 Tf 50
65	Explaining brain size variation: from social to cultural brain. Trends in Cognitive Sciences, 2012, 16, 277-284.	7.8	166
66	Dissociation between seeing and acting: Insights from common marmosets (Callithrix jacchus). Behavioural Processes, 2012, 89, 52-60.	1.1	10
67	Can We Measure Brain Efficiency? An Empirical Test with Common Marmosets <i>(Callithrix jacchus)</i> . Brain, Behavior and Evolution, 2012, 80, 26-40.	1.7	36
68	Impartial Third-Party Interventions in Captive Chimpanzees: A Reflection of Community Concern. PLoS ONE, 2012, 7, e32494.	2.5	69
69	Can captive orangutans (Pongo pygmaeus abelii) be coaxed into cumulative build-up of techniques?. Journal of Comparative Psychology (Washington, D C: 1983), 2011, 125, 446-455.	0.5	44
70	Evolutionary precursors of social norms in chimpanzees: a new approach. Biology and Philosophy, 2011, 26, 1-30.	1.4	43
71	Social learning and evolution: the cultural intelligence hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1008-1016.	4.0	266
72	Social Learning and Evolution. , 2011, , 123-138.		1

5

Judith M Burkart

#	Article	IF	CITATIONS
73	Cognitive consequences of cooperative breeding in primates?. Animal Cognition, 2010, 13, 1-19.	1.8	259
74	An evaluation of the geographic method for recognizing innovations in nature, using zoo orangutans. Primates, 2010, 51, 101-118.	1.1	24
75	On the psychology of cooperation in humans and other primates: combining the natural history and experimental evidence of prosociality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2723-2735.	4.0	162
76	Primate Behavior and Human Universals: Exploring the Gap. , 2010, , 3-15.		5
77	Mind the Gap: Cooperative Breeding and the Evolution of Our Unique Features. , 2010, , 477-496.		45
78	Cooperative breeding and human cognitive evolution. Evolutionary Anthropology, 2009, 18, 175-186.	3.4	543
79	Trade-offs between social learning and individual innovativeness in common marmosets, Callithrix jacchus. Animal Behaviour, 2009, 77, 1291-1301.	1.9	63
80	Primate behavior and human universals. Evolutionary Anthropology, 2008, 17, 85-87.	3.4	0
81	Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates. Brain, Behavior and Evolution, 2007, 70, 115-124.	1.7	455
82	Other-regarding preferences in a non-human primate: Common marmosets provision food altruistically. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19762-19766.	7.1	335
83	Understanding visual access in common marmosets, Callithrix jacchus: perspective taking or behaviour reading?. Animal Behaviour, 2007, 73, 457-469.	1.9	69
84	Geometrical gaze following in common marmosets (Callithrix jacchus) Journal of Comparative Psychology (Washington, D C: 1983), 2006, 120, 120-130.	0.5	72
85	A new mark test for mirror self-recognition in non-human primates. Primates, 2006, 47, 187-198.	1.1	40
86	Recursive retrospective revaluation of causal judgments Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 1171-1186.	0.9	7
87	Recursive retrospective revaluation of causal judgments Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 1171-1186.	0.9	0
88	Eine evolutionsbiologische Perspektive der menschlichen Kognition. Studia Philosophica, 0, , .	0.0	0